
Answers to the Exercises -- Chapter 1

SECTION 1

1. a Sentence, official notation

b Sentence, informal notation

- c Not a sentence; it is impossible to construct " \rightarrow "
- d Not a sentence; the rules of formation do not allow you to enclose a negated formula in parentheses, only conditionals.
- e Sentence, informal notation

$$\begin{array}{c} (\mathsf{P} \rightarrow \mathsf{Q}) \rightarrow (\mathsf{R} \rightarrow \sim \mathsf{Q}) \\ \land \\ (\mathsf{P} \rightarrow \mathsf{Q}) \quad (\mathsf{R} \rightarrow \sim \mathsf{Q}) \\ \land & \land \\ \mathsf{P} \quad \mathsf{Q} \quad \mathsf{R} \quad \sim \mathsf{Q} \\ & & | \\ & & \mathsf{Q} \end{array}$$

- f Not a sentence; conditionals contained inside other conditionals must be surrounded by parentheses.
- g Not a sentence; this is the same as sentence (f) with extra parentheses put on the outside; If (g) were a sentence, then (f) would be a sentence in informal notation; since (f) is not a sentence, (g) can't be either.
- h Sentence; informal notation

$$\begin{array}{c} (\text{-}S \rightarrow R) \rightarrow ((\text{-}R \rightarrow S) \rightarrow \text{-}(\text{-}S \rightarrow R)) \\ & \wedge \\ \text{-}S \rightarrow R & (\text{-}R \rightarrow S) \rightarrow \text{-}(\text{-}S \rightarrow R) \\ & \wedge \\ \text{-}S \quad R & \text{-}R \rightarrow S & \text{-}(\text{-}S \rightarrow R) \\ & | \\ S & \text{-}R \quad S \quad \text{-}(\text{-}S \rightarrow R) \\ & | \\ S & \text{-}R \quad S \quad \text{-}S \rightarrow R \\ & | \\ & R & \text{-}S \quad R \\ & | \\ & S \end{array}$$

i Sentence; informal notation

$$\begin{array}{c} \mathsf{P} \to (\mathsf{Q} \to \mathsf{P}) \\ \land \\ \mathsf{P} \quad \mathsf{Q} \to \mathsf{P} \\ \land \\ \mathsf{Q} \quad \mathsf{P} \end{array}$$

SECTION 2

- 1. a $S \rightarrow R$, because "only if" immediately precedes the consequent
 - b $R \rightarrow S$, because "provided that" is equivalent to "if", and "if" immediately precedes the antecedent
 - c ~S, because "won't" means the same as "will not", the sentence only contains one negation indicator
 - d S→R, because "only if" immediately precedes the consequent
 - e R \rightarrow S, because "given that" is equivalent to "if" and "if" immediately precedes the antecedent
- Susan will be late only provided that it rains Susan will be late only if it rains S→R
 - b Only on condition that it rains will Susan be late Only if it rains will Susan be late $S \rightarrow R$
 - c Susan will be late only in case it rains Susan will be late only if it rains $S \rightarrow R$
 - d Susan will be late only if it rains $S \rightarrow R$
 - e It is not the case that Susan will be late ~S

SECTION 3

- a If Veronica doesn't leave William won't either If Veronica doesn't leave William won't leave If Veronica doesn't leave then William won't leave ~V→~W
 - b William will leave if Yolanda does, provided that Veronica doesn't William will leave if Yolanda does, if Veronica doesn't [leave]
 If Veronica doesn't [leave], then (William will leave if Yolanda does)
 If Veronica doesn't [leave], then (if Yolanda [leaves], then William will leave)
 ~V → (Y→W)
 - c If Yolanda doesn't leave, then Veronica will leave only if William doesn't \sim Y \rightarrow (V \rightarrow \sim W)

- d If Yolanda doesn't leave then Veronica will leave, **given that** William doesn't If Yolanda doesn't leave then Veronica will leave, if William doesn't If William doesn't [leave], then (if Yolanda doesn't leave then Veronica will leave) $\sim W \rightarrow (\sim Y \rightarrow V)$
- 2. a William will leave if Veronica does If Veronica [leaves], then William will leave $V \rightarrow W$
 - b Veronica won't leave if William does If William [leaves], then Veronica won't leave $W \rightarrow \sim V$
 - c If Veronica leaves, then if William doesn't leave, Yolanda will leave If Veronica leaves, then $(\sim W \rightarrow Y)$ V $\rightarrow (\sim W \rightarrow Y)$
 - d If Veronica doesn't leave if William doesn't, then Yolanda won't If (if William doesn't [leave], then Veronica doesn't leave), then Yolanda won't [leave] $(\sim W \rightarrow \sim V) \rightarrow \sim Y$
 - e William won't leave **provided that** Veronica doesn't leave William won't leave if Veronica doesn't leave If Veronica doesn't leave, then William won't leave ~V → ~W
 - f If William leaves, then if Veronica leaves **so will** Yolanda If William leaves, then (if Veronica leaves, then Yolanda will leave) $W \rightarrow (V \rightarrow Y)$
 - g William will leave only if if Veronica leaves then so will Yolanda William will leave only if (if Veronica leaves then so will Yolanda) William will leave \rightarrow (if Veronica leaves then **so will** Yolanda) William will leave \rightarrow (if Veronica leaves then Yolanda will leave) W \rightarrow (V \rightarrow Y)
 - h William will leave only if Veronica leaves, only **provided that** Yolanda will leave (William will leave only if Veronica leaves) only if Yolanda will leave $(W \rightarrow V) \rightarrow Y$

- a None of the above; it might look like a modus tollens inference, but the second premise, Q, would have to first be changed to ~~Q by applying double negation; so while the argument is valid, it is not a one-step application of modus tollens.
 - b None of the above
 - c Double negation
 - d Modus ponens
 - e Modus tollens
 - f None of the above
 - g Modus ponens; the consequent of the conditional does not need to be an atomic sentence, it can be molecular as well.
 - h None of the above; it may look like a modus tollens inference, but the second premise is not actually the negation of the consequent of the first premise.

- i Double negation and none of the above are both good answers; the conclusion can be inferred by double negation from the first premise, but since the second premise is not involved in that inference, the *whole argument* is not a double-negation inference
- 2. In all cases we can validly infer any sentence which results from putting '~~' in front of either premise by the rule double negation. Such results are not enumerated below.
 - a ~X may be inferred by modus ponens.
 - b X may be inferred by double negation; ~~W may be inferred by modus tollens.
 - c Nothing additional
 - d $(R \rightarrow X)$ may be inferred by modus ponens.
 - e Nothing additional; Modus tollens cannot be applied because the second premise is not actually the negation of the consequent of the first premise.
 - f $(W \rightarrow X)$ may be inferred from the first premise by double negation; this must be done before you apply modus tollens with the second premise, so you can't apply modus tollens in *one step* to get ~W.
 - g Nothing additional; if you apply double negation to the second premise you can then apply modus tollens as a *second step* to get ~W.
 - h Nothing additional
 - i $(W \rightarrow X)$ follows by double negation.

1. Only errors are listed.

First derivation

Line 6 -- line 6 is not available at line 6; derivation can be corrected by writing "5 dn".

Second derivation

- Line 3 -- when justifying writing a premise, no line citation is given
- Line 4 -- the sentence on line 2 is not the negation of the consequent of the sentence on line 3; in this case we would need to first apply dn to line 2 as an intermediate step. Then we could apply mt with line 3, which would result in ~~P. P could then be inferred on the following line by dn.
- Line 5 -- two lines must be cited with mp; the sentence inferred does follow from line 4 together with the first premise, but the first premise must be cited somehow.
- Line 7 -- "5 6 mt" would result in ~R rather than ~~R.
- Line 9 -- "5 8 mp" is OK, but the derivation is not done; we set out to show ~R, but line 9 displays ~Q, so we cannot conclude the derivation at this point and so it is incorrect to write "dd" to mark the conclusion of the derivation of ~R.

Third derivation

Line 3 -- "~S" is not one of the premises.

Line 7 -- neither line 5 nor line 6 is a conditional, so mt cannot possibly apply to that pair of lines.

2. In each case the derivation displayed does not represent the only possible derivation; many alternate, equally correct derivations can be given.

 $\begin{array}{c} \mathsf{P} \\ \mathsf{Q} \to \mathsf{\sim}\mathsf{P} \\ \mathsf{R} \to \mathsf{Q} \\ ∴ \mathsf{\sim}\mathsf{R} \end{array}$

1.	Show ~R		
2.	Р	pr	
3.	~~P	2 dn	
4.	$Q \rightarrow \sim P$	pr	
5. 6.	~Q	3 4 mt	
о. 7.	$R \rightarrow Q$ ~R	pr 5 6 mt	1
7. 8.	~~	7 dd	
0.		7 44	
	$W \to \sim(V {\to} \sim Y)$		
	$X \rightarrow (V \rightarrow \sim Y)$		
	$V \rightarrow Y$		
	$(V \rightarrow Y) \rightarrow X$		
	∴ ~W		
1.	Show ~W		
2. 3.	$V \rightarrow Y$	pr	
3. 4.	$ \begin{array}{c} (V \rightarrow Y) \rightarrow X \\ X \end{array} $	pr 2 3 mp	
4. 5.	$X \rightarrow (V \rightarrow \sim Y)$	pr	
6.	V→~Y	4 5 mp	
7.	~~(V→~Y)	6 dn	
8.	$W \rightarrow \sim (V \rightarrow \sim Y)$	pr	
9.	~W ` ´	7 8 mt	
10.		9 dd	
	$(W{\rightarrow}Z) \rightarrow (Z{\rightarrow}W)$		
	$(Z \rightarrow W) \rightarrow \sim X$		
	$P \rightarrow X$		
	~~P ∴ ~(W→Z)		
1.	Show ~(W→Z)		
2. 3.	~~P P	pr 2 dn	
3. 4.	$P \rightarrow X$	pr	
5.		3 4 mp	
с. С	X V	C da	

5 dn

6 7 mt

8 9 mt 10 dd

pr

pr

~~X

 $(Z{\rightarrow}W) \rightarrow {\sim}X$

 $(W \rightarrow Z) \rightarrow (Z \rightarrow W)$

~(Z→W)

∼(W→Z)

6. 7.

8.

9.

10.

11.

In this derivation and those below, the "dd" could occur at the end of the previous line.

1. Only errors are listed.

Derivation a

All correct

Derivation b

- Line 3 -- Line 1 is not available at line 3 because *when line 3 is written*, line 1 is still an uncancelled show line.
- Line 7 -- No problem with the use of cd to box and cancel, but mt cannot be applied to lines 5 and 6 because line 6 does not contain the negation of the consequent of line 5; you would have to add a line and apply double negation to line 6 first.

Derivation c

Line 2 -- You can only assume the antecedent of the conditional to be shown.

11 cd

- Line 3 -- While the sentence on line 3 does logically follow from line 2 and premise 1, you can't apply mp to line 2 alone.
- Line 9 -- The application of dn to line 8 is OK, but you can't end a conditional derivation on a line that does not contain the consequent of the conditional you set out to show.

2. In each case the derivation displayed does not represent the only possible derivation; many alternate, equally correct derivations can be given.

a.
$$P \rightarrow (Q \rightarrow (R \rightarrow S))$$

 $\sim Q \rightarrow \sim R$
R
 $\therefore P \rightarrow S$
1. Show $P \rightarrow S$
2. $P \rightarrow (Q \rightarrow (R \rightarrow S))$ pr
4. $Q \rightarrow (R \rightarrow S)$ 23 mp
5. R pr
6. $\sim \sim R$ 5 dn
7. $\sim Q \rightarrow \sim R$ pr
8. $\sim \sim Q$ 67 mt
9. Q 8 dn
10. $R \rightarrow S$ 49 mp
11. S 510 mp

b.	$\begin{array}{l} Q \rightarrow \sim(R {\rightarrow} S) \\ P \rightarrow (R {\rightarrow} S) \end{array}$
	$\sim Q \rightarrow R$
	$: P \to S$

1.	Show P \rightarrow	S

12.

2. 3.	Р	ass cd
3.	$P \rightarrow (R \rightarrow S)$	pr
4.	R→S	2 3 mp
5.	~~(R→S)	4 dn
6. 7.	$\sim (R \rightarrow S)$ Q $\rightarrow \sim (R \rightarrow S)$	pr
	~Q	5 6 mt
8.	$\sim Q \rightarrow R$	pr
9.	R	7 8 mp
10.	S	4 9 mp
11.		10 cd

C.	$U \rightarrow (U \rightarrow V)$ ~R \rightarrow ~(U \rightarrow V) R \rightarrow ~S $\therefore U \rightarrow$ ~S	
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11.	$\begin{array}{c} \therefore U \rightarrow -S \\ \hline Show \ U \rightarrow -S \\ \hline U \\ U \rightarrow (U \rightarrow V) \\ U \rightarrow V \\(U \rightarrow V) \\ -R \rightarrow -(U \rightarrow V) \\ -R \\ R \\ R \\ R \rightarrow -S \\ -S \end{array}$	ass cd pr 2 3 mp 4 dn pr 5 6 mt 7 dn pr 8 9 mp 10 cd
3. a	$P \rightarrow T$ $\sim X \rightarrow \sim T$ $\sim S \rightarrow \sim X$ $\therefore P \rightarrow S$	
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11.	$\begin{array}{c} \text{Show P} \rightarrow S \\ \hline P \\ P \rightarrow T \\ T \\ \neg \neg T \\ \neg X \rightarrow \neg T \\ \neg \neg X \\ \neg S \rightarrow \neg X \\ \neg \neg S \\ S \end{array}$	ass cd pr 2 3 mp 4 dn pr 5 6 mt pr 7 8 mt 9 dn 10 cd
b 1.	$T \rightarrow S$ $Y \rightarrow (S \rightarrow P)$ $P \rightarrow \sim X$ Y $\therefore T \rightarrow \sim X$ Show $T \rightarrow \sim X$	
2. 3. 4. 5. 6. 7. 8. 9. 10. c	$ \begin{array}{c} T \\ T \rightarrow S \\ S \\ Y \rightarrow (S \rightarrow P) \\ Y \\ S \rightarrow P \\ P \\ P \rightarrow -X \\ -X \\ \hline S \rightarrow -T \\ -S \rightarrow -R \\ -R \rightarrow X \end{array} $	ass cd pr 2 3 mp pr pr 5 6 mp 4 7 mp pr 8 9 mp cd
	$\begin{array}{c} Y \to T \\ \therefore \ \sim X \to \sim Y \end{array}$	

1.	Show $\sim X \rightarrow \sim Y$	
2. 3.	~X	ass cd
3.	$\sim R \rightarrow X$	pr
4.	~~R	2 3 mt
5.	$\begin{array}{c} \simS \to \simR \\ \sim\simS \end{array}$	pr
6.		4 5 mt
7.	S	6 dn
8.	$S \rightarrow \sim T$	pr
9.	~T	7 8 mp
10.	$Y \rightarrow T$	pr
11.	~Y	9 10 mt cd

1. Only errors are listed.

Derivation a

All correct

Derivation b

- Line 3 -- The sentence on line 3 is not a premise.
- Line 4 -- Line 2 is not the negation of the consequent of line 3 so mt doesn't apply. You would first have to apply dn to line 2. Even in that case the result would be ~~S rather than ~S.
- Line 5 -- "ass id" may only appear on the line immediately following a show line.
- Line 7 -- The mt inference is OK, but 5 and 7 do not directly contradict so id is used incorrectly. The derivation could be concluded on line 7 with "4 id" since 4 and 7 contradict directly.

Derivation c

- Line 2 -- The sentence on the line is not the negation (or the un-negation, for that matter) of the show line.
- Line 4 -- There is no way to apply mt with lines 2 and 3.
- Line 6 -- 2 is not the negation of the consequent of 5 (though it should have been).
- Line 7 -- There is no way that you can apply mt with lines 5 and 6; 2 and 7 don't contradict directly, so it is premature to conclude with id.

2. In each case the derivation displayed does not represent the only possible derivation; many alternate, equally correct derivations can be given.

a. $\begin{subarray}{c} \begin{subarray}{c} \end{subarray} \end{subarray} R \\ \end{subarray} \begin{subarray}{c} \end{subarray} \end{subarray} R \\ \end{subarray} \begin{subarray}{c} \end{subarray} \end{subarray} R \\ \end{subarray} \end{subarray} \end{subarray} R \\ \end{subarray} \end{subarray} \end{subarray} R \\ \end{subarray} \end{subarray} \end{subarray} \end{subarray} \end{subarray} R \\ \end{subarray} \e$

1.	Show Q	
2.	~Q	ass id
2. 3. 4. 5. 6.	$\sim Q \rightarrow R$	pr
4.	R	2 3 mp
5.	~~R	4 dn
	$S \rightarrow \sim R$	pr
7.	~S ~S → Q	5 6 mt
8.	$\sim S \rightarrow Q$	pr
9.	Q	7 8 mp
10.		2 9 id

b.	$(P \rightarrow Q) \rightarrow R$ $S \rightarrow (P \rightarrow Q)$ $\sim S \rightarrow R$ $\therefore R$	
1. 2. 3. 4. 5. 6. 7. 8. 9.	Show R $ \begin{array}{c} \sim R \\ (P \rightarrow Q) \rightarrow R \\ \sim (P \rightarrow Q) \\ S \rightarrow (P \rightarrow Q) \\ \sim S \\ \sim S \rightarrow R \\ R \\ \end{array} $	ass id pr 2 3 mt pr 4 5 mt pr 6 7 mp 2 8 id
	$\begin{array}{l} \simP \to (R {\rightarrow} S) \\ (R {\rightarrow} S) \to T \\ \simT \\ Q \to (R {\rightarrow} S) \\ \therefore \sim(P \to Q) \end{array}$	
2. 3. 4.	Show $\sim (P \rightarrow Q)$ $P \rightarrow Q$ $\sim T$ $(R \rightarrow S) \rightarrow T$ $\sim (R \rightarrow S)$ $Q \rightarrow (R \rightarrow S)$ $\sim Q$ $\sim P$ $\sim P \rightarrow (R \rightarrow S)$ $R \rightarrow S$	ass id pr pr 3 4 mt pr 5 6 mt 2 8 mt pr 8 9 mp 5 10 id

1. Only errors are listed.

Derivation a All correct

Derivation b

Line 8 -- At this point in the derivation, line 5 is still an un-cancelled show line so line 4 can't be cited to conclude the sub-derivation; you could, however, use the rule **r** (repetition) to repeat line 4 within the sub-derivation and then use the repeated line to conclude the sub-derivation with id.

Derivation c

Line 6 -- Line 6 is not available on line 6. The problem would b resolved if we put 5 for 6.

Line 13 -- Strictly speaking there is no error here, but it was un-necessary to repeat line 2 in order to apply id; we could have just cited "2 12 id" because line 2 is not separated from line 13 by any un-cancelled show lines (only by cancelled ones).

2. In each case the derivation displayed does not represent the only possible derivation; many alternate, equally correct derivations can be given.

a.
$$P \rightarrow (Q \rightarrow R)$$

 $S \rightarrow Q$
 $\therefore S \rightarrow (P \rightarrow R)$
1. Show $S \rightarrow (P \rightarrow R)$

2.	S	ass cd
3.	Show P→R	
4. 5.	Р	ass cd
5.	$P \rightarrow (Q \rightarrow R)$	pr
6.	$Q \rightarrow R$	4 5 mp
7.	$S \rightarrow Q$	pr
8.	Q	2 7 mp
9. 10.	R	6 8 mp
10.		9 cd
11		3 cd

b.
$$(P \rightarrow Q) \rightarrow Q$$

 $P \rightarrow R$
 $Q \rightarrow \sim Q$
 $\therefore \sim (R \rightarrow Q)$

1. ફ	Show ~($R \rightarrow Q$)	
2.	$R \rightarrow Q$	ass id
3.	$\overset{Show}{\to}P\toQ$	
4.	Р	ass cd
5. 6.	$P \rightarrow R$	pr
6.	R	4 5 mp
7.	Q	26mp cd
8.	$(P \rightarrow Q) \rightarrow Q$	pr
9.	Q	3 8 mp
10.	$Q \rightarrow \sim Q$	pr
11.	~Q	910 mp 9 id

c.
$$(U \rightarrow V) \rightarrow (W \rightarrow X)$$

 $U \rightarrow Z$
 $\sim V \rightarrow \sim Z$
 $X \rightarrow Z$
 $\therefore W \rightarrow Z$

Show $W \rightarrow Z$	
W	ass cd
$\overset{\bullet}{Show}U\toV$	
U	ass cd
$U \rightarrow Z$	pr
Z	4 5 mp
~~Z	6 dn
$\sim V \rightarrow \sim Z$	pr
~~V	7 8 mt
V	9 dn cd
$(U \rightarrow V) \rightarrow (W \rightarrow X)$	pr
$W \rightarrow X$	3 11 mp
Х	2 12 mp
$X \rightarrow Z$	pr
Z	13 14 mp cd
	W Show U \rightarrow V U U \rightarrow Z Z $\sim \sim Z$ $\sim V \rightarrow \sim Z$ $\sim V$ V $(U \rightarrow V) \rightarrow (W \rightarrow X)$ W \rightarrow X X X X \rightarrow Z

1. a	$P \rightarrow R$ $Q \rightarrow \sim R$ $\sim Q \rightarrow Q$ $\therefore P \rightarrow Q$	
1. ફ	Show $P \rightarrow Q$	
2.	Р	ass cd
3.	$P \rightarrow R$	pr
4. 5.	R	2 3 mp
5.	~~R	4 dn
6.	$Q \rightarrow \sim R$	pr
7.	~Q	5 6 mt
8.	$\sim Q \rightarrow Q$	pr
9.	Q	7 8 mp cd

The only change was to conclude with cd instead of id.

b	$\begin{array}{c} Q \to U \\ Q \to -U \\ R \to Q \\ R \\ \vdots \end{array} \mathbf{P}$
1.	Show P
2.	~P
2. 3.	R
1	

R	pr
$R \rightarrow Q$	pr
Q	3 4 mp
$Q \rightarrow U$	pr
U	5 6 mp
$Q \rightarrow \sim U$	pr
~U	58mp 7id
	$ \begin{array}{l} R \rightarrow Q \\ Q \\ Q \rightarrow U \\ U \\ U \\ Q \rightarrow -U \end{array} $

ass id

The only change was to add an assumption for id.

C .	$U \rightarrow (V \rightarrow W)$ $X \rightarrow U$ $\sim X \rightarrow W$ $\therefore V \rightarrow W$	
1. 🗧	Show $V \rightarrow W$	
2.	~(V→W)	ass id
3.	$U \rightarrow (V \rightarrow W)$	pr
4.	~U	2 3 mt
5.	$X \rightarrow U$	pr
6.	~X	4 5 mt
7.	$\sim X \rightarrow W$	pr
8.	W	6 7 mp
9.	$\overset{Show}{V}V\toW$	
10.	V	ass cd
11.	W	8 r cd
12.		2 9 id

Only added lines 9-12.

2. a	$P \rightarrow R$ $Q \rightarrow \sim R$ $\sim Q \rightarrow Q$ $\therefore P \rightarrow Q$	
1. 2. 3. 4. 5. 6.	$ \begin{array}{c} \text{Show } P \rightarrow Q \\ P \\ R \\ \sim R \\ \sim Q \\ Q \end{array} $	ass cd 2 pr1 mp 3 dn 4 pr2 mt 5 pr3 mp cd
b 1.	$Q \rightarrow U$ $Q \rightarrow \sim U$ $R \rightarrow Q$ R $\therefore P$ Show P	
2. 3. 4. 5.	~P Q U ~U	ass id pr4 pr3 mp 3 pr1 mp 3 pr2 mp 4 id
c 1.	$U \rightarrow (V \rightarrow W)$ $X \rightarrow U$ $\sim X \rightarrow W$ $\therefore V \rightarrow W$ Show $V \rightarrow W$	
2. 3. 4. 5.	$ \begin{bmatrix} -(V \rightarrow W) \\ -U \\ -X \\ W \end{bmatrix} $	ass id 2 pr1 mt 3 pr2 mt 4 pr3 mp cd
3		
	$P \\ Q \\ \therefore P \rightarrow Q$	
1. 2.	$\frac{Show}{Q} P \to Q$	pr2 cd
1.	P ~Q ∴ ~(P→Q) Show ~(P→Q)	
2. 3.	$ \begin{array}{c} \text{Show} \sim (P \rightarrow Q) \\ \hline P \rightarrow Q \\ Q \end{array} $	ass id pr1 2 mp

3.	Q	pr1 2 mp
4.	~Q	pr2 3 id

$$\begin{array}{c} {}^{\sim}\mathsf{P} \\ \mathsf{Q} \\ \therefore \mathsf{P} \to \mathsf{Q} \end{array}$$

- 1. Show $P \rightarrow Q$ 2. Q pr2 cd $\sim P$ $\sim Q$ $\therefore P \rightarrow Q$
- 1. Show $P \rightarrow Q$

2.	Р	ass cd
3.	~P	pr1 2 id

1.

$$\begin{array}{c} \mathsf{S} \\ (\mathsf{R} \rightarrow \mathsf{S}) \rightarrow \mathsf{W} \\ \cdot \mathsf{W} \end{array}$$

1. Show W
2. Show
$$R \rightarrow S$$

3. S pr1 cd

0.		0	P' '	u		
4.	W		2 pr2	2 mp	dd	

2.
$$P \rightarrow (S \rightarrow R)$$

 $P \rightarrow (W \rightarrow S)$
 $W \rightarrow P$
 $\therefore W \rightarrow R$

1. Show $W \rightarrow R$

2.	W	as cd	
3.	Р	2 pr3 mp	
4.	$S \rightarrow R$	3 pr1 mp	
5.	$W \rightarrow S$	3 pr2 mp	
6.	S	2 5 mp	
7.	R	46 mp cd	

3.
$$(P \rightarrow Q) \rightarrow S$$

 $S \rightarrow T$
 $\sim T \rightarrow Q$
 $\therefore T$

1. Show T

2.	~T	ass id
3.	Q	2 pr3 mp
4.	Show P→Q	
5.	Q	3 r cd
6.	S	4 pr1 mp
7.	Т	6 pr2 mp 2 id

SECTION 11 Derivations for theorems are not given here.

SECTION 12

1. a $X \rightarrow \sim (Y \rightarrow Z)$		
$\therefore \ (Y \to Z) \to \simX$		
1. Show $(Y \rightarrow Z) \rightarrow \sim X$		
2. $(X \rightarrow \sim (Y \rightarrow Z)) \rightarrow ((Y \rightarrow Z) \rightarrow \sim X)$ 3. $(Y \rightarrow Z) \rightarrow \sim X$	T14	
3. $(Y \rightarrow Z) \rightarrow \sim X$	2 pr1 mp	dd
b $R \rightarrow (\sim P \rightarrow S)$		

$$R \rightarrow \sim P$$

$$\therefore R \rightarrow S$$
1. Show $R \rightarrow S$
2.
$$(R \rightarrow (\sim P \rightarrow S)) \rightarrow ((R \rightarrow \sim P) \rightarrow (R \rightarrow S)) \quad T6$$

3.	$(R \rightarrow P) \rightarrow (R \rightarrow S)$	2 pr1 mp	
4.	$R \rightarrow S$	3 pr2 mp	dd

$$\begin{array}{ccc} & \sim (\mathsf{R} \rightarrow (\mathsf{S} \rightarrow \mathsf{T})) \\ & \mathsf{R} \rightarrow \mathsf{P} \\ & \mathsf{P} \rightarrow (\mathsf{Q} \rightarrow (\mathsf{S} \rightarrow \mathsf{T})) \\ & \therefore & \sim \mathsf{Q} \end{array}$$
1. Show $\sim \mathsf{Q}$
2.
$$\begin{array}{ccc} \mathsf{Q} & \text{ass id} \\ & 3. & \sim (\mathsf{R} \rightarrow (\mathsf{S} \rightarrow \mathsf{T})) \rightarrow \mathsf{R} & \mathsf{T21} \\ & \mathsf{R} & & 3 \ \mathsf{pr1} \ \mathsf{mp} \\ & \mathsf{S} \rightarrow \mathsf{T} & & 4 \ \mathsf{pr2} \ \mathsf{mp} \\ & \mathsf{G} \rightarrow (\mathsf{S} \rightarrow \mathsf{T}) & & 5 \ \mathsf{pr3} \ \mathsf{mp} \\ & \mathsf{S} \rightarrow \mathsf{T} & & 2 \ \mathsf{6} \ \mathsf{mp} \\ & \mathsf{8.} & \sim (\mathsf{R} \rightarrow (\mathsf{S} \rightarrow \mathsf{T})) \rightarrow \sim (\mathsf{S} \rightarrow \mathsf{T}) & \mathsf{T22} \\ & \mathsf{9.} & \begin{array}{c} & \sim (\mathsf{S} \rightarrow \mathsf{T}) & & \mathsf{8} \ \mathsf{pr1} \ \mathsf{mp} \ \mathsf{7} \ \mathsf{id} \end{array}$$

d
$$Q \rightarrow R$$

 $R \rightarrow S$
 $\therefore Q \rightarrow S$
1. Show $Q \rightarrow S$

••		
2.	$(Q \rightarrow R) \rightarrow ((R \rightarrow S) \rightarrow (Q \rightarrow S))$	T4
3.	$(R \rightarrow S) \rightarrow (Q \rightarrow S)$	2 pr1 mp
4.	$Q \rightarrow S$	3 pr2 mp dd
	-	