Answers to the Exercises -- Chapter 2

SECTION 1

Exercises 1 and 2 answered together:
a. Not a sentence
b. Informal notation

c. Official notation

\wedge
$\begin{array}{ll}\text { Q } & R \\ T & F\end{array}$
d. Not a sentence
e. Informal notation

$$
(\mathrm{P} \rightarrow \mathrm{Q}) \vee(\mathrm{R} \rightarrow \sim \mathrm{Q})
$$

f. Not a sentence
g. Informal notation

h. Informal notation

i. Informal notation

$$
\begin{aligned}
& \mathrm{P} \vee(\mathrm{Q} \rightarrow \mathrm{P}) \\
& \mathrm{T} \\
& \wedge \\
& \mathrm{P} \quad \mathrm{Q} \rightarrow \mathrm{P} \\
& \mathrm{~T} \wedge \Lambda \\
& \quad \mathrm{Q} \quad \mathrm{P}
\end{aligned}
$$

SECTION 2

1. a. $\quad R \wedge P$
b. $\quad W \vee R$
c. $\quad \sim R \wedge T$
d. $\quad R \wedge S$
e. $\quad \mathrm{Q} \leftrightarrow \mathrm{R}$

2 and 3 answered together
a. $\quad S \vee \vee$ false
b. $\quad R \leftrightarrow S$ true
c. $R \wedge S$ false
d. $\quad \mathrm{Q} \vee \mathrm{T} \quad$ false
e. $Q \wedge S \quad$ false

SECTION 3

1. a.

b.

c.

$\sim(P \vee R)$	$\sim P \vee R$
F	F
I	Λ
$P \vee R$	$\sim P$
T	F
Λ	F
Λ	I
T	P
T	T

d.

$\sim Q$	$(P \vee(Q \leftrightarrow R))$
$\sim \mathrm{Q}$	$\mathrm{P} \vee(\mathrm{Q} \leftrightarrow \mathrm{R})$
T	T
\|	Λ
Q	$P \quad \mathrm{Q} \leftrightarrow \mathrm{R}$
F	T
	\wedge

e.

2. a. $\quad \sim \mathrm{V} \leftrightarrow \sim \mathrm{W}$; "won't" is a negation with narrow scope.
b. $\quad \sim \mathrm{V} \rightarrow(\mathrm{Y} \rightarrow \mathrm{W} \wedge \mathrm{V})$; "both" gives rise to a conjunction with narrow scope since it splits the names from the predicate. The comma prevents Y and V from occurring together.
c. $\quad \mathrm{Y} \vee(\mathrm{W} \vee \mathrm{V})$; "unless" is a disjunction sign.
d. $\quad(\mathrm{Y} \wedge \sim \mathrm{V}) \vee(\mathrm{V} \wedge \sim \mathrm{W})$
3. a. Only if Veronica doesn't leave will William leave, or Veronica and William and Yolanda will all leave.
(Only if Veronica doesn't leave will William leave) \vee (Veronica and William and Yolanda will leave)
(William will leave \rightarrow Veronica doesn't leave) $\vee(\vee \wedge W \wedge Y)$
$(\mathrm{W} \rightarrow \sim \mathrm{V}) \vee(\mathrm{V} \wedge \mathrm{W} \wedge \mathrm{Y})$
b. If neither William nor Veronica leaves, Yolanda won't either If neither William [leaves] nor Veronica leaves, [then] Yolanda won't [leave] $\sim(\mathrm{W} \vee \mathrm{V}) \rightarrow \sim \mathrm{Y}$
c. If William will leave if Veronica leaves, then he will surely leave if Yolanda leaves If (William will leave if Veronica leaves) then ([William] will leave if Yolanda leaves) $(\mathrm{V} \rightarrow \mathrm{W}) \rightarrow(\mathrm{Y} \rightarrow \mathrm{W})$
d. Neither William nor Veronica nor Yolanda will leave
$\sim(\mathrm{W} \vee \vee \vee \mathrm{Y})$
4. \quad "Veronica leaves but neither William nor Yolanda leaves" corresponds to the truth-value assignment: V --- true; W --- false; Y --- false. We use parse trees to compute the truth values of the complex sentences.
a.

$$
\begin{aligned}
& (W \rightarrow-V) \underset{T}{\vee}(V \wedge W \wedge Y) \\
& \text { ^ } \\
& \text { I } \\
& \stackrel{\text { F }}{\wedge} \\
& \begin{array}{lll}
V & V & W \\
T & T & F
\end{array}
\end{aligned}
$$

b.

$$
\begin{aligned}
& \sim(\mathrm{W} \vee \mathrm{~V}) \underset{T}{\sim} \sim \\
& \text { T } \\
& \Lambda \\
& \underset{F}{\sim(W \vee V)} \underset{T}{\sim Y} \\
& \begin{array}{cc}
\underset{T}{I} \vee & \underset{Y}{I} \\
T & F
\end{array} \\
& \text { ^ } \\
& \text { W V } \\
& \text { F T }
\end{aligned}
$$

c.
d.

$$
\begin{aligned}
& (\mathrm{V} \rightarrow \mathrm{~W}) \underset{\mathrm{T}}{\rightarrow}(\mathrm{Y} \rightarrow \mathrm{~W}) \\
& \wedge \\
& \mathrm{V} \rightarrow \mathrm{~W} \quad \mathrm{Y} \rightarrow \mathrm{~W}
\end{aligned}
$$

$\underset{\sim}{\sim}(\mathrm{W} \vee \vee \vee \mathrm{Y})$	
	\wedge
$W \vee \vee \vee Y$	
	T
	\wedge
	W V V Y
	T F
	\wedge
	W V
	F T

5. a. Sally will run and win unless she quits
(Sally will run and [Sally will] win) \vee ([Sally] quits)
$(R \wedge W) \vee Q$
b. Sally will win exactly in case she runs without quitting

Sally will win exactly in case (she runs [and doesn't] quit)
$W \leftrightarrow(R \wedge \sim Q)$
c. Sally, who will run, will win if she doesn't quit

Sally will run, and Sally will win if she doesn't quit
$R \wedge(\sim Q \rightarrow W)$
d. Sally will run and quit, but she will win anyway

Sally will run and quit, and she will win
$(R \wedge Q) \wedge W$

SECTION 4

1. a. None; if we had $\sim \sim Q$ instead of Q it would be an instance of MTP.
b. Simplification
c. Double Negation
d. MTP
e. CB
f. None.
g. $B C$
h. Adjunction
i. None
2. a. $\quad \sim \mathrm{W} \leftrightarrow \sim \mathrm{X}$ by CB ; also $\sim \mathrm{X} \leftrightarrow \sim \mathrm{W}$ by CB
b. $\quad \sim \sim W$ by MTP
c. Nothing
d. $\quad \sim \mathrm{W}$ by S ; also $\sim \mathrm{X}$ by S
e. $\quad W \rightarrow \sim X$ by $B C$; also $\sim X \rightarrow W$ by $B C$
f. Nothing

SECTION 5 Derivations of numbered theorems not given
SECTION 6 Derivations of numbered theorems not given

SECTION 7

1. a. All fine
b. In line 8, the sentence that can be inferred from 7 by RT39 is $\mathrm{W} \rightarrow \sim \mathrm{S}$.

2, 3, 4, 5: Derivations of numbered theorems not given

SECTION 8

1. a. All fine
b. Line 4: MTP does not apply;

Line 8: BC (biconditional to conditional) does not apply; we could use CB;
Line 11: MP does not apply to biconditionals; you have to split the biconditional into conditionals first using BC.
c. Line 2: the result of applying $D M$ to $p r 2$ is $\sim Y \wedge \sim \sim Z$ rather than $\sim Y \wedge Z$.

Line 3: NC doesn't apply; the NC would generate line 3 if line 2 were $Y \wedge \sim Z$.
Line 4: Line 4 is not available at line 4 ; it may not be cited to justify itself. The sentence could be generated by applying MT to line 3 and pr1.
2. a. $\quad \mathrm{U} \wedge \mathrm{V} \rightarrow \mathrm{X} \quad$ <use dm> $\sim V \rightarrow Y$

$$
X \vee Y \rightarrow Z
$$

$$
\therefore \sim Z \rightarrow \sim U
$$

1. Show $\sim \mathrm{Z} \rightarrow \sim \mathrm{U}$

2.	$\sim Z$	ass cd
3.	$\sim(X \vee Y)$	pr3 2 mt
4.	$\sim \mathrm{X} \wedge \sim Y$	3 dm
5.	$\sim \mathrm{X}$	4 s
6.	$\sim Y$	4 s
7.	$\sim(U \wedge \vee)$	pr1 5 mt
8.	$\sim U \vee \sim V$	7 dm
9.	$\sim \sim V$	$6 \mathrm{pr2} \mathrm{mt}$
10.	$\sim U$	89 mtp cd

b. $\quad(\mathrm{X} \rightarrow \mathrm{Y}) \rightarrow \mathrm{Z} \quad$ <use nc> $\sim Z$
$V \rightarrow Y$

1. Show $\sim \mathrm{V}$

2.	$\sim(X \rightarrow Y)$	pr1 pr2 mt
3.	$\mathrm{X} \wedge \sim \mathrm{Y}$	2 nc
4.	$\sim \mathrm{Y}$	3 s
5.	$\sim \mathrm{V}$	4 pr 3 mt dd

c. $\quad P \vee Q$
$\mathrm{Q} \rightarrow \mathrm{S}$
$U \vee \sim S$
$\mathrm{P} \vee \mathrm{S} \rightarrow \mathrm{R}$
$\mathrm{R} \rightarrow \mathrm{U}$
$\therefore \mathrm{U}$

1. Show U
2. \quad Show $P \rightarrow U$
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.

Show P \rightarrow U	
P	ass cd
$\mathrm{P} \vee \mathrm{S}$	3 add
R	4 pr 4 mp
U	5 pr 5 mp cd
Show Q \rightarrow U	
Q	ass cd
S	8 pr 2 mp
$\sim \sim S$	9 dn
U	10 pr 3 mtp cd
U	$\text { pr1 } 27 \text { sc }$

SECTION 9

1. a. $\quad \sim(P \leftrightarrow Q)$
<use nb>
$R \vee P$
$\sim \mathrm{Q} \rightarrow \mathrm{R}$
$\therefore \mathrm{R}$
2. Show R

2.	$\sim \mathrm{R}$	ass id
3.	P	$2 \mathrm{pr2} \mathrm{mtp}$
4.	$\mathrm{P} \leftrightarrow \sim \mathrm{Q}$	pr 1 nb
5.	$\mathrm{P} \rightarrow \sim \mathrm{Q}$	4 bc
6.	$\sim \mathrm{Q}$	35 mp
7.	R	6 pr 3 mp
8.	27 id	

b. | | $W \rightarrow U$ | <use cdj> |
| ---: | :--- | ---: |
| | $\sim W \rightarrow V$ | |
| \therefore | $U \vee V$ | |

1. Show $\mathrm{U} \vee \mathrm{V}$
2. \quad Show $\sim U \rightarrow V$
3. $\sim U \quad$ ass cd
4.

$\begin{array}{ll}\text { 5. } & \mathrm{V} \\ \text { 6. } & \mathrm{U} \vee \mathrm{V} \\ \end{array}$
c. $\quad P \vee(Q \wedge S)$
$R \vee Q$
$S \vee \sim P$
$\mathrm{Q} \rightarrow \sim \mathrm{S}$
$\therefore \mathrm{R}$

1. Show R

2.	$\sim \mathrm{R}$	ass id
3.	Q	2 pr 2 mtp
4.	$\sim \mathrm{S}$	3 pr 4 mp
5.	$\sim \mathrm{Q} \vee \sim \mathrm{S}$	4 add
6.	$\sim(\mathrm{Q} \wedge \mathrm{S})$	5 dm
7.	P	6 pr 1 mtp
8.	$\sim \sim \mathrm{P}$	7 dn
9.	S	8 pr 3 mtp
10.		49 id

SECTION 10

1. a. $\quad(R \leftrightarrow S) \vee(R \leftrightarrow \sim S)$; tautology

R	S	$(\mathrm{R} \leftrightarrow \mathrm{S}) \vee(\mathrm{R} \leftrightarrow \sim \mathrm{S})$
T	T	T
T	F	T
F	T	T
F	F	T

b. $\quad \mathrm{R} \leftrightarrow(\mathrm{S} \leftrightarrow \mathrm{R})$; not a tautology

R	S	$\mathrm{R} \leftrightarrow(\mathrm{S} \leftrightarrow \mathrm{R})$
T	F	F

c. $\quad R \vee(S \wedge T) \rightarrow R \wedge(S \vee T)$; not a tautology

R	S	T	$R \vee(S \wedge T) \rightarrow R \wedge(S \vee T)$
F	T	T	F

d. $\quad \sim \mathrm{U} \rightarrow(\mathrm{U} \rightarrow \sim \mathrm{V})$; tautology

U	V	$\sim \mathrm{U} \rightarrow(\mathrm{U} \rightarrow-\mathrm{V})$
T	T	T
T	F	T
F	T	T
F	F	T

e. $\quad(\sim R \leftrightarrow R) \rightarrow$; tautology

S		$(\sim \mathrm{R} \leftrightarrow \mathrm{R}) \rightarrow \mathrm{S}$
T	T	T
T	F	T
F	T	T
F	F	T

f. $\quad(S \wedge T) \vee(S \wedge \sim T) \vee \sim S$; tautology

T	S	$(\mathrm{S} \wedge \mathrm{T}) \vee(\mathrm{S} \wedge \sim \mathrm{T}) \vee \sim \mathrm{S}$
T	T	T
T	F	T
F	T	T
F	F	T

SECTION 11

a. $\mathrm{U} \wedge \mathrm{V} \rightarrow \mathrm{X} \quad \mathrm{NO}$
$\sim V \rightarrow U$
$\mathrm{X} \vee \mathrm{V} \rightarrow \mathrm{U}$
$\therefore \mathrm{V} \rightarrow \sim \mathrm{U}$

U	V	X	$\mathrm{U} \wedge \mathrm{V} \rightarrow \mathrm{X}$	$\sim \mathrm{V} \rightarrow \mathrm{U}$	$\mathrm{X} \vee \mathrm{V} \rightarrow \mathrm{U}$	$\mathrm{V} \rightarrow \sim \mathrm{U}$
T	T	T	T	T	T	F

		$\begin{aligned} & (X \rightarrow \\ & \sim Z \\ & \sim Y \end{aligned}$	$Y) \rightarrow Z \quad Y E$		
X	Y	Z	$(X \rightarrow Y) \rightarrow Z$	-Z	$\sim Y$
T	T	T	T	F	F
T	T	F	F	T	F
T	F	T	T	F	T
T	F	F	T	T	T
F	T	T	T	F	F
F	T	F	F	T	F
F	F	T	T	F	T
F	F	F	F	T	T

c. $\quad \sim(\mathrm{P} \leftrightarrow \mathrm{Q})$

YES
$R \vee P$
$\sim Q \rightarrow R$
$\therefore \mathrm{R}$

P	Q	R	$\sim(\mathrm{P} \leftrightarrow \mathrm{Q})$	$\mathrm{R} \vee \mathrm{P}$	$\sim \mathrm{Q} \rightarrow \mathrm{R}$	R
T	T	T	F	T	T	T
T	T	F	F	T	T	F
T	F	T	T	T	T	T
T	F	F	T	T	F	F
F	T	T	T	T	T	T
F	T	F	T	F	T	F
F	F	T	F	T	T	T
F	F	F	F	F	F	F

d. $\quad S \vee T$ NO $W \vee S$

$$
\sim T \vee \sim S
$$

$$
\therefore \sim S
$$

S	T	W	$\mathrm{S} \vee \mathrm{T}$	$\mathrm{W} \vee \mathrm{S}$	$\sim \mathrm{T} \vee \sim \mathrm{S}$	$\sim \mathrm{S}$
T	F	T	T	T	T	F

e. $\quad W \rightarrow U$
YES
$\sim \mathrm{W} \rightarrow \mathrm{V}$
$\therefore U \vee V$

U	V	W	$\mathrm{W} \rightarrow \mathrm{U}$	$-\mathrm{W} \rightarrow \mathrm{V}$	$\mathrm{U} \vee \mathrm{V}$
T	T	T	T	T	T
T	T	F	T	T	T
T	F	T	T	T	T
T	F	F	T	F	T
F	T	T	F	T	T
F	T	F	T	T	T
F	F	T	F	T	F
F	F	F	T	F	F

f. $P \leftrightarrow \sim Q \quad N O$
$\mathrm{Q} \rightarrow \mathrm{R} \vee \mathrm{P}$
$R \rightarrow \sim Q \vee \sim P$
$\therefore \mathrm{Q} \vee \mathrm{R}$

P	Q	R	$\mathrm{P} \leftrightarrow \sim \mathrm{Q}$	$\mathrm{Q} \rightarrow \mathrm{R} \vee \mathrm{P}$	$\mathrm{R} \rightarrow \sim \mathrm{Q} \vee \sim \mathrm{P}$	$\mathrm{Q} \vee \mathrm{R}$
T	F	F	T	T	T	F

