Answers to the Exercises -- Chapter 3

SECTION 1

1. a. Fred is an orangutan.

Of
b. Gertrude is an orangutan but Fred isn't.

Gertrude is an orangutan [and] Fred is not [an orangutan].
$\mathrm{Og} \wedge \sim \mathrm{Of}$
c. Tony Blair will speak first.

Fb
d. Gary lost weight recently; he is happy.

Gary lost weight recently [and] [Gary] is happy.
$\mathrm{Lg} \wedge \mathrm{Hg}$
e. Felix cleaned and polished.

Felix cleaned and [Felix] polished.
$\mathrm{Cf} \wedge \mathrm{Of}$
f. Darlene or Abe will bat clean-up.

Darlene [will bat clean-up] or Abe will bat clean-up.
$B d \vee B a$
2. 'D' is true of doctors
' L ' is true of people who are in love
'h' stands for Hans
'a' stands for Amanda
a. Hans is a doctor but Amanda isn't. Hans is a doctor [and] Amanda is not [a doctor] $\mathrm{Dh} \wedge \sim \mathrm{Da}$
b. Hans, who is a doctor, is in love

Hans is in love [and Hans] is a doctor
Lh \wedge Dh
c. Hans is in love but Amanda isn't

Hans is in love [and] Amanda is [not in love]
Lh $\wedge \sim$ La
d. Neither Hans nor Amanda is in love
[It is not the case that] (Hans [is in love] or Amanda is in love)
$\sim(L h \vee L a)$
f. Hans and Amanda are both doctors.

Hans is a doctor [and] Amanda is a doctor.
$\mathrm{Dh} \wedge \mathrm{Da}$
3. 'L' for things that live in Brea
' D ' for things that drive to school
a. Eileen and Cosi both live in Brea.

Eileen lives in Brea and Cosi loves in Brea
Le \wedge Lc
b. Eileen drives to school, and so does Hank. Eileen drives to school and hank drives to school
De \wedge Dh
c. If Hank lives in Brea then he drives to school; otherwise he doesn't drive to school. (If Hank lives in Brea then he drives to school) [and] (otherwise he doesn't drive to school) (If Hank lives in Brea then he drives to school) [and] (lif Hank doesn't live in Brea then] he doesn't drive to school) $(\mathrm{Lh} \rightarrow \mathrm{Dh}) \wedge(\sim \mathrm{Lh} \rightarrow \sim \mathrm{Dh})$
d. If David and Hank both live in Brea then David drives to school but Hank doesn't. If (David and Hank both live in Brea) then (David drives to school [and] Hank doesn't [drive to school]) $(\mathrm{Ld} \wedge \mathrm{Lh}) \rightarrow(\mathrm{Dd} \wedge \sim \mathrm{Dh})$
e. Neither Hank nor Eileen live in Brea, yet each of them drives to school. Neither Hank nor Eileen live in Brea, [and] [Hank and Eileen] drive to school.
$\sim(L h \vee L e) \wedge(D h \wedge D e)$

SECTION 2

1. For each of the following, say whether it is a formula in official notation, or in informal notation, or not a formula at all. If it is a formula, parse it.
a. Official notation
b. Informal notation

$$
\exists x \sim \sim G x \rightarrow H x \vee \exists y G y
$$

\wedge

c. Official notation

d. Not a formula; a quantifier cannot occur outside a quantifier phrase.
e. Informal notation

```
Fa }->(\textrm{Gb}\leftrightarrow\textrm{Hc}
\(\wedge\)
```

Fa $(\mathrm{Gb} \leftrightarrow \mathrm{Hc})$
\wedge
Gb Hc

$$
\begin{aligned}
& \sim \forall x(F x \rightarrow(G x \wedge H x)) \\
& \forall x(F x \rightarrow(G x \wedge H x)) \\
& \text { I } \\
& (F x \rightarrow(G x \wedge H x)) \\
& \wedge \\
& \text { Fx (Gx } \wedge H x) \\
& \Lambda \\
& G x \quad H x
\end{aligned}
$$

f. Not a formula; a variable can only occur in an atomic formula or a quantifier phrase, and never by itself.
g. Informal notation

$\forall x(\mathrm{Gx} \leftrightarrow \mathrm{Hx}) \underset{\wedge}{\rightarrow} \mathrm{Ha} \wedge \exists \mathrm{zKz}$	
$\forall x(\mathrm{Gx} \leftrightarrow \mathrm{Hx})$	$\mathrm{Ha} \wedge \exists \mathrm{zKz}$
\|	\wedge
$\mathrm{Gx} \leftrightarrow \mathrm{Hx}$	Ha ヨzKz
\wedge	
Gx Hx	Kz

SECTION 3

1. a. Sentence

b. Not a formula; there is no way to form " $\exists \sim z$ " in our grammar.
c. Formula

d. Formula

e. Formula

f. Sentence

g. Sentence

h. Not a formula; there is no way to form " $\forall x y$ " in our grammar.
i. Not a formula; " $\exists \mathrm{y}$ " cannot stand on its own as a subformula.
j. Sentence

SECTION 4

1. a. Something is a sofa and is well built. There is a well-built sofa..
b. Everything is such that if it is a sofa then it is well-built. All sofas are well-built.
c. Everything is either a sofa or is well-built. Everything is a sofa, unless it's well-built.
d. Something is such that it is not a sofa. Something isn't a sofa.
e. Everything is such that it is not a sofa. There are no sofas.
f. Everything is such that if it is both bell-built and a sofa, then it is comfortable. Every well-built sofa is comfortable.
g. Something is comfortable and everything is well-built.
h. Something is such that if it is comfortable, then everything is well-built.
2. Assume that all giraffes are friendly, and that some giraffes are clever and some aren't.
a. $\forall x(G x \rightarrow F x) \quad$ True, since all giraffes are friendly.
b. $\forall x(G x \rightarrow C x) \quad$ False, since not every giraffe is clever.
c. $\exists x(\sim F x \wedge G x) \quad$ False, since every giraffe is friendly.
d. $\exists y(F y \wedge C y) \quad$ True, since giraffes are friendly, and some of them are clever.
e. $\exists z(G z \wedge C z) \quad$ True, since some giraffes are clever.
f. $\forall x(G x \rightarrow \sim G x) \quad$ False, since not every giraffe isn't a giraffe. (In fact, no giraffe isn't a giraffe, but it only takes one to falsify the symbolic sentence.)

SECTION 5a

1. a. Every Handsome Elephant is Friendly.
$\forall x((H x \wedge E x) \rightarrow F x)$
b. No handsome elephant is friendly.
$\sim \exists x((H x \wedge E x) \wedge F x)$
c. Some elephants are not handsome.
$\exists x(E x \wedge \sim H x)$
d. Some handsome elephants are friendly.
$\exists x((H x \wedge E x) \wedge F x)$
e. Each friendly elephant is handsome.
$\forall x((\mathrm{Fx} \wedge \mathrm{Ex}) \rightarrow \mathrm{Hx})$
f. A handsome elephant is not friendly.
$\exists x((H x \wedge E x) \wedge \sim F x)$
g. No friendly elephant is handsome.
$\sim \exists x((F x \wedge E x) \wedge H x)$

SECTION 5b

1. Suppose that `A' stands for `is a U.S. state', `C' for `is a city', 'L' for `is a capital', and `E' for `is in the Eastern time zone'. What are the truth values of these sentences?
a. $\quad \forall x(C x \rightarrow L x)---$ False; Los Angeles is a city but not a capital.
b. $\exists x(C x \wedge L x)$--- True; Sacramento is a city and a capital.
c. $\exists x(C x \wedge L x \leftrightarrow E x)$--- True, because something makes the biconditional true, by making both sides false. For example, Los Angeles is not a capital, and it is not in the Eastern time zone.
d. $\quad \forall x(C x \wedge E x \rightarrow A x)$--- False; Philadelphia is not a state.
e. $\quad \sim \exists x(A x \wedge E x)---$ False; Delaware is a state in the Eastern time zone.
f. $\quad \exists x(C x \wedge E x) \wedge \exists x(C x \wedge \sim E x)$--- True; Philadelphia is a city in the Eastern time zone and LA is a city outside the eastern time zone.
g. $\quad \exists x(C x \wedge E x \wedge A x)--$ False; no city is also a state.
h. $\quad \sim \exists x(C x \wedge \sim C x)--$ True. There is no city which isn't a city.
2. a. All Giraffes are spOtted.
$\forall x(\mathrm{Gx} \rightarrow \mathrm{Ox})$
b. All Clever giraffes are spotted.
$\forall x(\mathrm{Gx} \wedge \mathrm{Cx} \rightarrow \mathrm{Ox})$
c. No clever giraffes are spotted.
$\sim \exists x(G x \wedge C x \wedge O x)$
d. Every giraffe is either spotted or Drab.
$\forall x(\mathrm{Gx} \rightarrow(\mathrm{Ox} \vee \mathrm{Dx}))$
e. Some giraffes are clever.
$\exists x(G x \wedge C x)$
f. Some spotted giraffes are clever.
$\exists x(O x \wedge G x \wedge C x)$
g. Some giraffes are clever and some aren't.

Some giraffes are clever and some [giraffes are not clever].
$\exists x(G x \wedge C x) \wedge \exists x(G x \wedge \sim C x)$
h. Some spotted giraffes aren't clever. $\exists x(O x \wedge G x \wedge \sim C x)$
i. No spotted giraffe is clever but every unspotted one is. No spotted giraffe is clever [and] every un-spotted [giraffe] is [clever].
$\sim \exists \mathrm{x}(\mathrm{Ox} \wedge \mathrm{Gx} \wedge \mathrm{Cx}) \wedge \forall \mathrm{x}(\sim \mathrm{Ox} \wedge \mathrm{Gx} \rightarrow \mathrm{Cx})$
j. Every clever spotted giraffe is either wIse or Foolhardy. $\forall x(((C x \wedge S x) \wedge G x) \rightarrow(I x \vee F x))$
k. Either all spotted giraffes are clever, or all clever giraffes are spotted.
$\forall x(\mathrm{Ox} \wedge \mathrm{Gx} \rightarrow \mathrm{Cx}) \vee \forall \mathrm{x}($
I. Every clever giraffe is foolhardy. $\forall x(C x \wedge G x \rightarrow F x)$
m. If some giraffes are wise then not all giraffes are foolhardy.
$\exists x(G x \wedge I x) \rightarrow \sim \forall x(G x \rightarrow F x)$
n. All giraffes are spotted if and only if no giraffes aren't spotted.
$\forall x(\mathrm{Gx} \rightarrow \mathrm{Ox}) \leftrightarrow \sim \exists \mathrm{x}(\mathrm{Gx} \wedge \sim \mathrm{Ox})$
o. Nothing is both wise and foolhardy.
$\sim \exists x(I x \wedge F x)$

SECTION 5c

1. a. Only Friendly Elephants are Handsome (ambiguous)
i. $\forall x(H x \rightarrow(F x \wedge E x))$
ii. $\forall x((E x \wedge H x) \rightarrow F x)$
b. If only elephants are friendly, no Giraffes are friendly
$\forall x(F x \rightarrow E x) \rightarrow \sim \exists x(G x \wedge F x)$
c. Only the Brave are fAir. $\forall x(A x \rightarrow B x)$
d. If only elephants are friendly then every elephant is friendly $\forall x(F x \rightarrow E x) \rightarrow \forall x(E x \rightarrow F x)$
e. All and only elephants are friendly. All elephants are friendly [and] Only elephants are friendly. $\forall x(E x \rightarrow F x) \wedge \forall x(F x \rightarrow E x)$
f. If every elephant is friendly, only friendly Animals are elephants (ambiguous)
i. $\forall x(E x \rightarrow F x) \rightarrow \forall x(E x \rightarrow(F x \wedge A x))$
ii. $\forall x(E x \rightarrow F x) \rightarrow \forall x((E x \wedge A x) \rightarrow F x)$
g. If any elephants are friendly, all and only giraffes are nasty If some elephants are friendly, (all giraffes are Nasty and only giraffes are nasty) $\exists x(E x \wedge F x) \rightarrow(\forall x(G x \rightarrow N x) \wedge \forall x(N x \rightarrow G x))$
h. Among spOtted animals, only giraffes are handsome. $\forall x(\mathrm{Ox} \rightarrow(\mathrm{Hx} \rightarrow \mathrm{Gx}))$
i. Among spotted animals, all and only giraffes are handsome $\forall x(\mathrm{Ox} \rightarrow((\mathrm{Gx} \rightarrow \mathrm{Hx}) \wedge(\mathrm{Hx} \rightarrow \mathrm{Gx}))$
j. Only giraffes frolic if annoyed. If a thing froLics if aNnoyed, it is a giraffe.
$\forall x((N x \rightarrow L x) \rightarrow G x)$

SECTION 5d

1. Symbolize these sentences.
a. Every Giraffe which Frolics is Happy $\forall x(\mathrm{Fx} \wedge \mathrm{Gx} \rightarrow \mathrm{Hx})$
b. Only giraffes which frolic are happy (ambiguous)
i. $\forall x(G x \wedge H x \rightarrow F x)$
ii. $\forall x(H x \rightarrow G x \wedge F x)$
c. Only giraffes are Animals which are Long-necked. $\forall x(A x \wedge L x \rightarrow G x)$
d. If only giraffes frolic, every animal which is not a giraffe doesn't frolic. $\forall x(\mathrm{Fx} \rightarrow \mathrm{Gx}) \rightarrow \forall \mathrm{x}(\mathrm{Ax} \wedge \sim \mathrm{Gx} \rightarrow \sim \mathrm{Fx})$
e. Some giraffe which frolics is long-necked or happy. $\exists x((F x \wedge G x) \wedge(L x \vee H x))$
f. No giraffe which is not happy frolics and is long-necked.
$\sim \exists x((\sim H x \wedge G x) \wedge(F x \wedge L x))$
g. Some giraffe is not both long-necked and happy.
$\exists x(G x \wedge \sim(L x \wedge H x))$

SECTION 5e

1. a. If a Giraffe is Happy then it Frolics unless it is Lame.
$\forall x(\mathrm{Gx} \wedge \mathrm{Hx} \rightarrow \mathrm{Fx} \vee \mathrm{Lx})$
b. A Monkey frolics unless it is not happy. $\forall x(\mathrm{Mx} \rightarrow \mathrm{Fx} \vee \sim \mathrm{Hx})$
c. Among giraffes, only happy ones frolic.
$\forall x(\mathrm{Gx} \rightarrow(\mathrm{Fx} \rightarrow \mathrm{Hx}))$
d. All and only giraffes are happy if they are not lame.
$\forall x(\mathrm{Gx} \leftrightarrow(\sim \mathrm{Lx} \rightarrow \mathrm{Hx}))$
e. A giraffe frolics only if it is happy.

$$
\forall \mathrm{x}(\mathrm{Gx} \wedge \mathrm{Fx} \rightarrow \mathrm{Hx}) \quad \text { or } \quad \forall \mathrm{x}(\mathrm{Gx} \rightarrow(\mathrm{Fx} \rightarrow \mathrm{Hx}))
$$

f. Only giraffes frolic if happy.
$\forall x((\mathrm{Hx} \rightarrow \mathrm{Fx}) \rightarrow \mathrm{Gx})$
g. All monkeys are happy if some giraffe is.
$\exists x(\mathrm{Gx} \wedge \mathrm{Hx}) \rightarrow \forall \mathrm{x}(\mathrm{Mx} \rightarrow \mathrm{Hx})$
h. Cute monkeys frolic.
$\forall x(C x \wedge M x \rightarrow F x)$
i. Giraffes ruN and frolic if and only if they are Blissful and Exultant. $\forall x(G x \rightarrow(U x \wedge F x \leftrightarrow B x \wedge E x))$
j. If those who are heAlthy are not lame, then if they are exultant, they will frolic. $\forall x((\mathrm{Ax} \rightarrow \sim \mathrm{Lx}) \rightarrow(\mathrm{Ex} \rightarrow \mathrm{Fx}))$
k. Only giraffes and monkeys are blissful and exultant.
$\forall x(B x \wedge E x \rightarrow G x \vee M x)$
I. The brave(I) are happy. $\forall x(I x \rightarrow H x)$
m. If a giraffe frolics, then no monkey is blissful unless it is.
$\forall x((G x \wedge F x) \rightarrow(B x \vee \sim \exists y(M y \wedge B y)))$
n. Giraffes and monkeys frolic if happy.
$\forall x(\mathrm{Gx} \vee \mathrm{Mx} \rightarrow(\mathrm{Hx} \rightarrow \mathrm{Fx}))$

SECTION 6

1. a. The sky is Blue

Everything that is blue is prEtty
\therefore Something is pretty
Be
$\forall x(B x \rightarrow E x)$
$\therefore \quad \exists \mathrm{xEx}$
1
2
3
4
Show $\exists x E x$

$\mathrm{Be} \rightarrow$ Ee	pr2 ui
Ee	$2 \mathrm{pr1} \mathrm{mp}$
$\exists x E x$	3 eg dd

b. Every Hyena is Grey.

Every hyena is an Animal
Jenny is a hyena
\therefore Some animal is grey
$\forall x(\mathrm{Hx} \rightarrow \mathrm{Gx})$
$\forall x(\mathrm{Hx} \rightarrow \mathrm{Ax})$
He
$\therefore \exists \mathrm{x}(\mathrm{Ax} \wedge \mathrm{Gx})$
Show $\exists x(\mathrm{Ax} \wedge \mathrm{Gx})$

$\mathrm{He} \rightarrow \mathrm{Ge}$	pr1 ui
$\mathrm{He} \rightarrow \mathrm{Ae}$	pr2 ui
Ge	pr3 2 mp
Ae	pr3 3 mp
$\mathrm{Ae} \wedge \mathrm{Ge}$	45 adj
$\exists x(\mathrm{Ax} \wedge \mathrm{Gx})$	6 eg dd

c. If some Hyena is Grey, every hyena is grey

Every sCavenger is grey
Jenny is a hyena and a scavenger
Kathy is a hyena
\therefore Kathy is grey
$\exists x(H x \wedge G x) \rightarrow \forall x(H x \rightarrow G x)$
$\forall x(C x \rightarrow G x)$
$\mathrm{He} \wedge \mathrm{Ce}$
Ha
$\therefore \mathrm{Ga}$
Show Ga

Show $\exists x(\mathrm{Hx} \wedge \mathrm{Gx})$	
He	pr3 s
Ce	pr3 s
$\mathrm{Ce} \rightarrow \mathrm{Ge}$	pr2 ui
Ge	45 mp
$\mathrm{He} \wedge \mathrm{Ge}$	36 adj
$\exists x(\mathrm{Hx} \wedge \mathrm{Gx})$	7 eg dd
$\forall \mathrm{x}(\mathrm{Hx} \rightarrow \mathrm{Gx})$	2 pr 1 mp
$\mathrm{Ha} \rightarrow \mathrm{Ga}$	9 ui
Ga	10 pr 4 mp dd

2. The error is at line 3. It is not permissible to use El to get an instance of pr2 in the variable z because z occurs already on line 2 ; this would violate the restriction on IE.
3. No derivations are given for named theorems.

SECTION 8

1. Symbolize these arguments and provide derivations to validate them. Give an explicit scheme of abbreviation for each.
a. If history is right (\mathbf{P}), then if anyone was strOng, hercules was strong.

Only those who work out (M) are strong, and only those with self-Discipline work out.
\therefore If Hercules does not have self-discipline, then either history is not right or nobody is strong.

$$
\begin{aligned}
& \mathrm{P} \rightarrow(\exists \mathrm{xOx} \rightarrow \mathrm{Oh}) \\
& \forall \mathrm{x}(\mathrm{Ox} \rightarrow \mathrm{Mx}) \wedge \forall \mathrm{x}(\mathrm{Mx} \rightarrow \mathrm{Dx}) \\
\therefore & \sim \mathrm{Dh} \rightarrow(\sim \mathrm{P} \vee \sim \exists \mathrm{OX})
\end{aligned}
$$

If some Giraffes are not Happy, then all giraffes are Morose.
Some giraffes pOnder the mysteries of life.
\therefore If some giraffes are not morose, then some who ponder the mysteries of life are happy.
$\exists x(G x \wedge \sim H x) \rightarrow \forall x(G x \rightarrow M x)$
$\exists x(G x \wedge O x)$
$\therefore \exists \mathrm{x}(\mathrm{Gx} \wedge \sim \mathrm{Mx}) \rightarrow \exists \mathrm{x}(\mathrm{Ox} \wedge \mathrm{Hx})$
Show $\exists x(G x \wedge \sim M x) \rightarrow \exists x(O x \wedge H x)$

$\exists x(G x \wedge \sim M x)$	ass cd
$\mathrm{Gi} \wedge \sim \mathrm{Mi}$	2 ei
Show $\sim \forall x(G x \rightarrow M x)$	
$\forall x(\mathrm{Gx} \rightarrow \mathrm{Mx})$	ass id
$\mathrm{Gi} \rightarrow \mathrm{Mi}$	5 ui
Mi	3 s 6 mp
$\sim \mathrm{Mi}$	3 s 7 id
$\sim \exists \mathrm{x}(\mathrm{Gx} \wedge \sim \mathrm{Hx})$	4 pr 1 mt
$\forall x \sim(G x \wedge \sim H x)$	9 qn
$\mathrm{Gj} \wedge \mathrm{Oj}$	pr2 ei
$\sim(\mathrm{Gj} \wedge \sim \mathrm{Hj})$	10 ui
$\sim G j \vee \sim \sim H j$	12 dm
Hj	11s dn 13 mtp dn
$\mathrm{Oj} \wedge \mathrm{Hj}$	11 s 14 adj
$\exists \mathrm{x}(\mathrm{Ox} \wedge \mathrm{Hx})$	15 eg cd

c. There is not a single Critic who either Likes art or can pAint.

Some level-Headed peOple are critics.
Anyone who can't paint is unEducated.
\therefore Some level-headed people are uneducated.
$\forall x(C x \rightarrow \sim(L x \vee A x))$
$\exists x((\mathrm{Hx} \wedge \mathrm{Ox}) \wedge \mathrm{Cx})$
$\forall x(O x \rightarrow(\sim A x \rightarrow \sim E x))$
$\therefore \exists \mathrm{x}((\mathrm{Hx} \wedge \mathrm{Ox}) \wedge \sim \mathrm{Ex})$

$(\mathrm{Hi} \wedge \mathrm{Oi}) \wedge \mathrm{Ci}$	pr2 ei
Ci	2 s
Hi	2 ss
Oi	2 ss
$\mathrm{Ci} \rightarrow \sim(\mathrm{Li} \vee \mathrm{Ai})$	pr1 ui
$\sim(\mathrm{Li} \vee \mathrm{Ai})$	36 mp
$\sim \mathrm{Li} \wedge \sim \mathrm{Ai}$	7 dm
$\sim \mathrm{Ai}$	8 s
$\mathrm{Oi} \rightarrow(\sim \mathrm{Ai} \rightarrow \sim \mathrm{Ei})$	pr3 ui
$\sim \mathrm{Ai} \rightarrow \sim \mathrm{Ei}$	510 mp
$\sim \mathrm{Ei}$	911 mp
$(\mathrm{Hi} \wedge \mathrm{Oi}) \wedge \sim \mathrm{Ei}$	2 s 12 adj
$\exists \mathrm{x}(\mathrm{H} \mathrm{H} \wedge$ 人 Ox$) \wedge \sim \mathrm{Ex})$	13 eg dd

d. No Astronaut is a good Dancer.

Every sInger is warm-Blooded.
If something is warm-blooded and is not a good dancer, then nothing that is either a singer or
an astronaut is Exultant.
\therefore If some astronaut is a singer, then no singer is exultant.
$\forall x(A x \rightarrow \sim D x)$
$\forall x(1 x \rightarrow B x)$
$\exists x(B x \wedge \sim D x) \rightarrow \forall x((I x \vee A x) \rightarrow \sim E x)$
$\therefore \exists \mathrm{x}(\mathrm{Ax} \wedge \mathrm{Ix}) \rightarrow \forall \mathrm{x}(\mathrm{Ix} \rightarrow \sim \mathrm{Ex})$

$\exists \mathrm{x}(\mathrm{Ax} \wedge \mathrm{Ix})$	ass cd
Show $\forall x(1 x \rightarrow \sim E x)$	
Show $\mathrm{Ix} \rightarrow \sim$ Ex	
IX	ass cd
$\mathrm{Ai} \wedge \mathrm{li}$	2 ei
$\mathrm{Ai} \rightarrow \sim \mathrm{Di}$	pr1 ui
$\mathrm{li} \rightarrow \mathrm{Bi}$	pr2 ui
\sim Di	6 s 7 mp
$\mathrm{Bi} \wedge \sim \mathrm{Di}$	6s 8 mp 9 adj
$\exists x(B x \wedge \sim D x)$	10 eg
$\forall x((1 x \vee A x) \rightarrow \sim E x)$	11 pr 3 mp
$(\mathrm{I} \times \vee \mathrm{Ax}) \rightarrow \sim \mathrm{Ex}$	12 ui
$\mathrm{Ix} \mathrm{V}^{\prime} \mathrm{Ax}$	5 add
\sim Ex	1314 mp cd
	4 ud
	3 cd

e. All stuDents who have a sense of Humor or are Brilliant seek Fame.

Anyone who seeks fame and is brilliant is Insecure.
Whoever is a Mathematician is brilliant.
\therefore Every student who is a mathematician is insecure.

$$
\begin{aligned}
& \forall x((\mathrm{Dx} \wedge(H x \vee B x)) \rightarrow F x) \\
& \forall x(F x \wedge B x \rightarrow I x) \\
& \forall x(M x \rightarrow B x) \\
\therefore \quad & \forall x((D x \wedge M x) \rightarrow I x)
\end{aligned}
$$

Show $\forall x((D x \wedge M x) \rightarrow I x)$
Show $(D x \wedge M x) \rightarrow I x$ $D x \wedge M x$ ass cd $D x$ 3 s $M x$ 3 s $M x \rightarrow B x$ pr3 ui $B x$ 56 mp $H x \vee B x$ 7 add $D x \wedge(H x \vee B x)$ 48 adj $(D x \wedge(H x \vee B x)) \rightarrow F x$ pr1 ui $F x$ 910 mp $F x \wedge B x$ 711 adj $F x \wedge B x \rightarrow I x$ pr2 ui $I x$ 1213 mp cd

f. There is a Monkey that is Happy if and only if some Giraffe is happy.

There is a monkey that is happy if and only if some giraffe is not happy.
All monkeys are happy.
\therefore It is not the case that either every giraffe is happy or none are.
$\exists x(M x \wedge(H x \leftrightarrow \exists x(G x \wedge H x))$
$\exists x(M x \wedge(H x \leftrightarrow \exists x(G x \wedge \sim H x))$
$\forall x(M x \rightarrow H x)$
$\therefore \sim(\forall \mathrm{x}(\mathrm{Gx} \rightarrow \mathrm{Hx}) \vee \forall \mathrm{x}(\mathrm{Gx} \rightarrow \sim \mathrm{Hx}))$

g. For every Astronaut that writes pOetry, there is one that doesn't.

For every astronaut that doesn't write poetry, there is one that does.
\therefore If there are any astronauts, some write poetry and some don't.

$$
\begin{aligned}
& \forall x((A x \wedge O x) \rightarrow \exists x(A x \wedge \sim O x)) \\
& \forall x((A x \wedge \sim O x) \rightarrow \exists x(A x \wedge O x)) \\
\therefore & \exists x A x \rightarrow \exists x(A x \wedge O x) \wedge \exists x(A x \wedge \sim O x)
\end{aligned}
$$

Show $\exists x A x \rightarrow \exists x(A x \wedge O x) \wedge \exists x(A x \wedge \sim O x)$

$\exists \mathrm{xAx}$	ass cd	
Ai	2 ei	
$\mathrm{Oi} \vee \sim \mathrm{Oi}$	T59	
Show $\mathrm{Oi} \rightarrow \exists \mathrm{x}(\mathrm{Ax} \wedge \mathrm{Ox}) \wedge \exists \mathrm{x}(\mathrm{Ax} \wedge \sim \mathrm{Ox})$		
Oi	ass cd	
$\mathrm{Ai} \wedge \mathrm{Oi}$	36 adj	
$\exists x(A x \wedge O x)$	7 eg	
$\mathrm{Ai} \wedge \mathrm{Oi} \rightarrow \exists \mathrm{x}(\mathrm{Ax} \wedge \sim \mathrm{Ox})$	Pr1 ui	
$\exists x(A x \wedge \sim O x)$	79 mp	
$(\exists x(A x \wedge O x) \wedge \exists x(A x \wedge \sim O x))$	810 adj	cd
Show $\sim \mathrm{Oi} \rightarrow \exists \mathrm{x}(\mathrm{Ax} \wedge \mathrm{Ox}) \wedge \exists \mathrm{x}(\mathrm{Ax} \wedge \sim \mathrm{Ox})$		
$\sim \mathrm{Oi}$	ass cd	
$\mathrm{Ai} \wedge \sim \mathrm{Oi}$	133 adj	
$\exists x(A x \wedge \sim O x)$	14 eg	
$\mathrm{Ai} \wedge \sim \mathrm{Oi} \rightarrow \exists \mathrm{x}(\mathrm{Ax} \wedge \mathrm{Ox})$	Pr2 ui	
$\exists x(A x \wedge O x)$	1416 mp	
$(\exists x(A x \wedge O x) \wedge \exists x(A x \wedge \sim O x))$	1517 adj	cd
$\exists x(A x \wedge O x) \wedge \exists x(A x \wedge \sim O x)$	$\begin{aligned} & 4512 \mathrm{sc} \\ & 19 \mathrm{~cd} \end{aligned}$	

<Could also skip line 4 and use sc appealing only to lines 5 and 12.>

SECTION 9

1. a. $\sim \exists x(A x \vee B x)$
$\forall x \forall y(G x \wedge H y \rightarrow B y)$
$\exists x G x$
$\therefore \forall \mathrm{x} \sim \mathrm{Hx}$

1	Show $\forall x \sim H x$	
2	$\sim \forall x \sim \mathrm{Hx}$	ass id
3	$\exists x \mathrm{Hx}$	2 qn
4	Hi	3 ei
5	Gj	pr3 ei
6	$\mathrm{Gj} \wedge \mathrm{Hi}$	45 adj
7	$\mathrm{Gj} \wedge \mathrm{Hi} \rightarrow \mathrm{Bi}$	pr2 ui ui
8	Bi	67 mp
9	$\forall \mathrm{x} \sim(\mathrm{Ax} \vee \mathrm{Bx})$	pr1 qn
10	$\sim(\mathrm{Ai} \vee \mathrm{Bi})$	9 ui
11	$\sim \mathrm{Ai} \wedge \sim \mathrm{Bi}$	10 dm
12	$\sim \mathrm{Bi}$	11 s 8 id

b. $\quad \exists x(H x \wedge \sim \exists y(G y \wedge H x))$
$\therefore \forall y \sim G y$
Show $\forall y \sim G y$

$\sim \forall y \sim G y$	ass id
$\exists y G y$	2 qn
$\mathrm{Hi} \wedge \sim \exists y(G y \wedge \mathrm{Hi})$	pr1 ei
Hi	4 s
$\sim \exists y(G y \wedge \mathrm{Hi})$	4 s
Gj	3 ei
$G j \wedge \mathrm{Hi}$	57 adj
$\exists y(G y \wedge \mathrm{Hi})$	8 eg 6 id

$\quad \forall \mathrm{x}(\mathrm{Ax} \rightarrow \forall \mathrm{y}(\mathrm{Bx} \leftrightarrow \mathrm{By}))$
$\exists z B z$
$\therefore \quad \forall \mathrm{y}(\mathrm{Ay} \rightarrow \mathrm{By})$
Show $\forall \mathrm{y}(\mathrm{Ay} \rightarrow \mathrm{By})$
Show $\forall \mathrm{i}(\mathrm{Ai} \rightarrow \mathrm{Bi})$

Show $\mathrm{Ai} \rightarrow \mathrm{Bi}$	
Ai ass cd $\mathrm{Ai} \rightarrow \forall \mathrm{y}(\mathrm{Bi} \leftrightarrow \mathrm{By})$ pr1 ui $\forall \mathrm{y}(\mathrm{Bi} \leftrightarrow \mathrm{By})$ 45 mp Bj pr2 ei $\mathrm{Bi} \leftrightarrow \mathrm{Bj}$ 6 ui Bi 8 bc 7 mp cd 3 ud $\forall \mathrm{y}(\mathrm{Ay} \rightarrow \mathrm{By})$ 2 av dd	

d. $\quad \sim \forall x(D x \vee E x)$

$$
\exists \mathrm{x}(\mathrm{Fx} \leftrightarrow \sim \mathrm{Ex}) \rightarrow \forall \mathrm{zDz}
$$

$\therefore \exists \mathrm{x} \sim \mathrm{Fx}$

e. $\quad J c \wedge \sim J d$
$\forall x K x \vee \forall x \sim K x$
$\exists x(\mathrm{Jx} \wedge \mathrm{Kx}) \rightarrow \forall \mathrm{x}(\mathrm{Kx} \rightarrow \mathrm{Jx})$
$\therefore \sim \mathrm{Kc}$

SECTION 10

1. a. $\quad \forall x(A x \rightarrow \exists y(B y \wedge \sim A y))$

$$
\sim \forall x B x
$$

$$
\sim \exists x(B x \wedge C x)
$$

$$
\therefore \exists \mathrm{x}(\mathrm{Ax} \wedge \mathrm{Cx})
$$

Universe: $\{1,2,3\}$
A: $\{1\}$
B: $\{2\}$
C: $\{3\}$
b. $\quad \exists x(D x \wedge E x \wedge \sim F x)$ $\exists x(\sim D x \wedge \sim E x)$ $\forall x(E x \rightarrow D x \vee F x)$
$\therefore \forall \mathrm{x}(\mathrm{Dx} \wedge \mathrm{Ex} \rightarrow \sim \mathrm{Fx})$
Universe: $\{1,2,3\}$
D: $\{1,2\}$
E: $\{1,2\}$
F: $\{1\}$
c. $\quad \exists x(F x \wedge G x)$
$\exists x(F x \wedge \sim G x)$
$\exists x(\sim F x \wedge G x)$
$\therefore \forall \mathrm{x}(\sim \mathrm{Fx} \rightarrow \mathrm{Gx}) \quad$ <requires more than three things in the universe>
Universe: $\{1,2,3,4\}$
F: $\{2,3\}$
G: $\{1,2\}$
d. $\quad \forall x \exists y(F x \leftrightarrow(G y \vee F x))$

$$
\therefore \sim \exists x F x \rightarrow \sim \exists \mathrm{xGx}
$$

Universe: $\{1,2\}$
F: \{ \}
G: $\{1\}$
e. $\quad \mathrm{Ha} \wedge \sim \mathrm{Hb}$
$\forall x(\mathrm{Kx} \rightarrow \mathrm{Hx} \wedge \mathrm{Jx})$
$\exists x(J x \wedge \sim K x)$
$\therefore \exists \mathrm{x}(\mathrm{Hx} \wedge \sim \mathrm{Jx})$
Universe: $\{1,2\}$
H: $\{1\}$
J: $\{1,2\}$
K: \{ \}
a --- 1
b --- 2

SECTION 11

1. For each of the following arguments use the method of expansions to determine whether the following is a counterexample for it or not.

Universe:

F: $\{\boldsymbol{0}\}$
G: $\{\mathbf{0}, \boldsymbol{3}\}$
H: $\{\boldsymbol{3}\}$
a: $\boldsymbol{3}$
b: $\mathbf{1}$
a. $\quad \forall x(H x \rightarrow \exists y(F y \wedge \sim H y))$

$$
\sim \forall x F x
$$

$$
\sim \exists x(F x \wedge G x)
$$

$$
\therefore \exists \mathrm{x}(\mathrm{Hx} \wedge \mathrm{Gx})
$$

The conclusion expands to:

$$
(\mathrm{H} 1 \wedge \mathrm{G} 1) \vee(\mathrm{H} 2 \wedge \mathrm{G} 2) \vee(\mathrm{H} 3 \wedge \mathbf{G} 3)
$$

which is true because H 3 and G3 are true. Since we have a true conclusion, we don't have a counterexample.
b. $\quad \exists x(G x \wedge H x \wedge \sim F x)$

$$
\exists x(\sim G x \wedge \sim H x)
$$

$$
\forall x(\mathrm{Hx} \rightarrow \mathrm{Gx} \vee \mathrm{Fx})
$$

$$
\therefore \forall \mathrm{x}(\mathrm{Gx} \wedge \mathrm{Hx} \rightarrow \sim \mathrm{Fx})
$$

The conclusion expands to:

$$
(\mathrm{G} 1 \wedge \mathrm{H} 1 \rightarrow \sim \mathrm{~F} 1) \wedge(\mathrm{G} 2 \wedge \mathrm{H} 2 \rightarrow \sim \mathrm{~F} 2) \wedge(\mathrm{G} 3 \wedge \mathrm{H} 3 \rightarrow \sim \mathrm{~F} 3)
$$

which is true because the first conjunct has a false antecedent, the second conjunct has a false antecedent, and the third conjunct has a true consequent. Since we have a true conclusion, we don't have a counterexample.
c. $\quad \exists x(F x \wedge G x)$
$\exists x(F x \wedge \sim G x)$
$\exists x(\sim F x \wedge G x)$
$\therefore \forall x(\sim F x \rightarrow G x)$
The second premise expands to:

$$
(F 1 \wedge \sim G 1) \vee(F 2 \wedge \sim G 2) \vee(F 3 \wedge \sim G 3)
$$

which is false because each disjunct is false. Since we have a false premise we don't have a counterexample.
d. $\quad \forall x \exists y(F x \leftrightarrow(G y \vee F x))$

$$
\therefore \sim \exists \mathrm{xFx} \rightarrow \sim \exists \mathrm{xGx}
$$

The conclusion expands to:

$$
\sim(F 1 \vee F 2 \vee F 3) \rightarrow \sim(G 1 \vee G 2 \vee G 3)
$$

which is true because the antecedent is false because its leftmost disjunct is true. Since we have a true conclusion we don't have a counterexample.
e. $\mathrm{Ha} \wedge \sim \mathrm{Hb}$

$$
\forall x(F x \rightarrow H x \wedge G x)
$$

$$
\exists x(G x \wedge \sim F x)
$$

$\therefore \exists \mathrm{x}(\mathrm{Hx} \wedge \sim \mathrm{Gx})$
The second premise expands to:

$$
(\mathrm{F} 1 \rightarrow \mathrm{H} 1 \wedge \mathrm{G} 1) \wedge(\mathrm{F} 2 \rightarrow \mathrm{H} 2 \wedge \mathrm{G} 2) \wedge(\mathrm{F} 3 \rightarrow \mathrm{H} 3 \wedge \mathrm{G} 3)
$$

which is false because the first conjunct has a true antecedent and a false consequent. Since we have a false premise, we don't have a counterexample.

