
Printout 9/19/2006 CHAPTER 2 SECTION 1

Copyrighted material Chapter 2 -- 1

Chapter Two
Sentential Logic with 'and', 'or', if-and-only-if'

1 SYMBOLIC NOTATION

In this chapter we expand our formal notation by adding three two-place connectives, corresponding
roughly to the English words 'and', 'or' and 'if and only if':

 ∧ and
 ∨ or
 ↔ if and only if

Conjunction: The first of these, '∧', is the conjunction sign; it has the same logical import as 'and'. It goes
between two sentences to form a complex sentence which is true if both of the parts (called 'conjuncts')
are true, and is otherwise false:

□ ○ (□∧○)
T T T
T F F
F T F
F F F

Disjunction: The disjunction sign, '∨', makes a sentence that is true in every case except when its parts
(its disjuncts) are both false. This corresponds to one use (the "inclusive" use) of 'or' in English:

□ ○ (□ ∨ ○)
T T T
T F T
F T T
F F F

Biconditional: The biconditional sign, '↔', states that both of the parts making it up (its constituents) are
the same in truth value. It works like this:

□ ○ (□ ↔ ○)
T T T
T F F
F T F
F F T

Each of these new connectives behaves syntactically just like the conditional sign, '→': you make a bigger
sentence out of two sentences plus a pair of parentheses:

 (□∧○)
 (□ ∨ ○)
 (□ ↔ ○)

Our expanded definition of a sentence in official notation is now:

Chapter Two SYMBOLIC SENTENCES
• Any capital letter between 'P' and 'Z' is a symbolic sentence.
• If □ is a symbolic sentence, so is ~□
• If □ and ○ are symbolic sentences, so are (□→○), (□∧○), (□ ∨ ○), and (□ ↔ ○).

Nothing is a symbolic sentence for purposes of chapter 2 unless it can be generated by
the clauses given above.

Printout 9/19/2006 CHAPTER 2 SECTION 1

Copyrighted material Chapter 2 -- 2

As before, we allow ourselves informally to omit the outer parentheses when the sentence occurs alone on
a line. It is also customary (and convenient) to omit parentheses around conjunctions or disjunctions
when they are combined with a conditional or biconditional sign. The sentence:

 P∧Q → R

is to be considered to be an informally worded conditional whose antecedent is a conjunction:

 (P∧Q) → R

If we want to make a conjunction whose second conjunct is a conditional, we must use parentheses
around the parts of the conditional:

 P ∧ (Q→R)

Likewise, this sentence:

P ↔ Q∨R

is an informally written biconditional whose second constituent is a disjunction:

P ↔ (Q∨R)

If we wish to write a disjunction whose first disjunct is a biconditional, we need to use parentheses around
the biconditional:

(P↔Q) ∨ R.

Finally, we may use three conjunction signs or disjunction signs (but not a mix of conjunctions with
disjunctions) as abbreviations for what you get by restoring the parentheses by grouping the left two parts
together, so that: 'P ∧ Q ∧ R' is an abbreviation for '(P∧Q) ∧ R'.

Informal Conventions

Outermost parentheses may be omitted.

Conjunction signs or disjunction signs may be used with conditional signs or
biconditional signs with the understanding that this is short for a conditional or
biconditional which has a conjunction or disjunction as a part. For example:
 P∨Q → R is informal notation for (P∨Q) → R
 P ↔ Q∧R is informal notation for P ↔ (Q∧R)

Repeated conjuncts or disjuncts without parentheses are short for the result of putting
parentheses around the part to the left of the last conjunction or disjunction sign. For
example:
 P ∨ Q ∨ R is informal notation for (P∨Q) ∨ R
 P ∧ Q ∧ R is informal notation for (P∧Q) ∧ R

Sentences with the new connectives may be parsed as we did in the previous chapter:

P∧Q → R P ↔ Q∨R
 2 2
 P∧Q R P Q∨R
 2 2
 P Q Q R

Printout 9/19/2006 CHAPTER 2 SECTION 1

Copyrighted material Chapter 2 -- 3

 ~(P∧Q) → (R ↔ P∨Q) ~~(R ↔ (P → ~Q))
 2 |
 ~(P∧Q) R ↔ P∨R ~(R ↔ (P → ~Q))
 | 2 |
 P∧Q R P∨R R ↔ (P → ~Q)
 2 2 2
 P Q P R R P→~Q
 2
 P ~Q
 |
 Q

Determining Truth Values Using such parsings, there is a mechanical way to determine whether any
given sentence is true or false if you know the truth values of the sentence letters making it up. First,
make a parse tree as above by taking the sentences on any given line and writing their immediate parts
below them. A parse tree for '(P∧Q) → (P∨R)' is:

 (P ∧ Q) → (P ∨ R)
 2
 (P ∧ Q) (P ∨ R)
 2 2
 P Q P R

Then write the truth values of the sentence letters below them. For example, if P and Q are both true but
R false, you would have:

 (P ∧ Q) → (P ∨ R)
 2
 (P ∧ Q) (P ∨ R)
 2 2
 P Q P R
 T T T F

Then go up the parse tree, placing a truth value under the major connective of each sentence based on
the truth values of its parts given below. For example, the truth value under '(P ∧ Q)' would be 'T' because
it is a conjunction, and both of its parts are T:

 (P ∧ Q) → (P ∨ R)
 2
 (P ∧ Q) (P ∨ R)
 T
 2 2
 P Q P R
 T T T F

Filling in the remaining parts gives you a truth value for the whole sentence at the top:

Printout 9/19/2006 CHAPTER 2 SECTION 1

Copyrighted material Chapter 2 -- 4

 ((P ∧ Q) → (P ∨ R))
 T
 2
 (P ∧ Q) (P ∨ R)
 T T
 2 2
 P Q P R
 T T T F

Sometimes not all of the parse tree needs to be filled out; this happens when partial information below a
sentence is sufficient to decide its truth value. In the example just given it is not necessary to figure out
the truth value of '(P ∧ Q)', since the conditional on the top line is determined to be true based on the
information that '(P ∨ R)' is true. So the following parse tree is sufficient to show that the main sentence is
true if the sentence letters have the indicated truth values:

 (P ∧ Q) → (P ∨ R)
 T
 2
 (P ∧ Q) (P ∨ R)
 T
 2 2
 P Q P R
 T F

EXERCISES

1. For each of the following state whether it is a sentence in official notation, or a sentence in informal
notation, or not a sentence at all. If it is a sentence, parse it as indicated above.

a. P ↔ Q → R
b. ~Q↔~R
c. ~(Q↔R)
d. P ∧ Q ∨ R
e. (P→Q) ∨ (R→~Q)
f. P ↔ (Q∧R) → Q

 g. P∧Q → (Q→R∨Q)
 h. P ↔ (P↔Q∧R)
 i. P ∨ (Q→P)

2. If 'P' and 'Q' are both true and 'R' is false, what are the truth values of the official or informal sentences
in 1? (Use the parses that you give in 1 to guide the determination of truth values.)

CHAPTER 2 SECTION 2

Copyrighted material Chapter 2 -- 5

2 ENGLISH EQUIVALENTS OF THE CONNECTIVES

Conjunctions: The word 'and' is equivalent to the symbol '∧'. There are other locutions of English that
may also be equivalent to '∧', although they are sometimes used to communicate something additional.
For example:

The book is short, and it is interesting
The book is short, but it is interesting
The book is short, although it is interesting
The book is short, even though it is interesting
The book is short; it is interesting

Some of these sentences suggest that if a book is short, you probably won't find it interesting. But all that
they literally say is that it is both short and interesting. If it isn't short, what you have said is false, and if it
isn't interesting then what you have said is false, but if it is both short and interesting, what you have said
is true, even if possibly misleading.

Conjunctions: □ ∧ ○
□ and ○
both □ and ○
□ but ○
□ although ○
although □, ○
□ even though ○
even though □, ○
□;○

In certain cases, use of a relative pronoun is logically equivalent to a use of '∧': the sentence 'Maria, who
was late, greeted the vice-counsel' is equivalent to 'Maria was late ∧ Maria greeted the vice-counsel'.

Disjunctions: The English word 'or' can be taken in two ways: inclusively or exclusively. If you are asked
to contribute food or money, you will probably take this as saying that you may contribute either or both;
the invitation is inclusive. But if a menu says that you may have soup or salad the normal interpretation is
that you may have either, but not both; the offer is exclusive. The difference in logical import appears in
the first row here:

□ ○ (□ inclusive-or ○) (□ exclusive-or ○)
T T T F
T F T T
F T T T
F F F F

If the English 'or' can be read either inclusively or exclusively, we will need to have a convention for how to
interpret it when it is used in exercises. Our convention will be that 'or' is always meant inclusively when it
is used in problems and examples in this text. That is, it coincides in logical import with our disjunction
sign '∨'.

A common synonym of 'or' is 'unless'. The sentence 'Wilma will leave unless there is food' is false if there
is no food but Wilma doesn’t leave; otherwise it is true, just like 'or' when read inclusively.

Disjunctions: □ ∨ ○
□ or ○
either □ or ○
□ unless ○

Biconditionals: We will see below that a biconditional sign is equivalent to two conditionals made from its
constituents. The sentence '(□ ↔ ○)' is equivalent to:

CHAPTER 2 SECTION 2

Copyrighted material Chapter 2 -- 6

 (□ → ○) ∧ (○ → □)

This can be read in English as '○ if □, and ○ only if □'; thus it is often pronounced 'if and only if'. The
English phrase 'just in case' or 'exactly in case' are sometimes used to state the equivalence of two
claims; the biconditional can be used to symbolize them:

 The game will be called off just in case it rains: Q ↔ R
 The game will be played exactly in case it is sunny: P ↔ S

Biconditionals: □ ↔ ○
□ if and only if ○
□ exactly on condition that ○
□ just in case ○

EXERCISES

1. For each of the following sentences say which symbolic sentence it is equivalent to.

a. It will rain, but the game will be played anyway.
 R ∧ P
 R → P
 R ↔ P

 b. Willa drove or got a ride
 W ∨ R
 W ↔ R

 c. Robert, who didn't get a ride, was tardy
 ~R → T
 ~R ∧ T

 d. It rained; the sell-a-thon was called off
 R ↔ S
 R ∧ S

 e. The quilting bee will be called off just in case it rains
 Q ∧ R
 Q ↔ R
 Q → R
 R → Q

2. Symbolize each of the following using this translation scheme:

 S Sally will walk
 V Veronica will give Sally a ride
 R It will rain
 Q Barbara will come with Quincy
 T Barbara will come with Tom

a. Sally will walk or Veronica will give her a ride.
b. Exactly on condition that it rains will Sally walk
c. Although it will rain, Sally will walk
d. Barbara will come with Quincy or Tom
e. Barbara will come with Quincy; Sally will walk

3. What are the truth values of the sentences in 2 when all of the simple sentences are false?

CHAPTER 2 SECTION 3

Copyrighted material Chapter 2 -- 7

3 COMPLEX SENTENCES

Complex sentences of English generally translate into complex sentences of the logical notation. As
usual, it is important to be clear about the grouping of clauses in the English sentence.

The following sentence is a simple conjunction:

 Polk and Quincy were presidents P ∧ Q

The following sentence is also a conjunction, one of whose conjuncts is a negation:

 Polk, but not Quincy, was a president. P ∧ ~Q

This is a negation of a conjunction:

 Not both Polk and Quincy were presidents. ~(P ∧ Q)

This is a simple disjunction:

Either Polk or Quincy was president. P ∨ Q

This is a complex sentence, with at least two different but equivalent symbolizations.

Neither Polk nor Quincy was president.

One symbolization is the negation of 'Either Polk or Quincy was president; in this symbolization 'neither'
means 'not either': ~(P ∨ Q). An equivalent symbolization is a conjunction of negations; 'neither P nor Q'
is equivalent to "not P and not Q": ~P ∧ ~Q

The fundamental principles for our new connectives are:

and, or, if and only if

When any of these expressions occurs between sentences, it gives rise to a
conjunction, disjunction, or biconditional. The constituents of the conjunction,
disjunction, or biconditional are symbolizations of sentences immediately to the
left and to the right of 'and', 'or', or 'if and only if'.

When 'either' occurs with 'or', the symbolization of the expression enclosed
between 'either' and 'or' is a disjunct. Likewise, When 'both' occurs with 'and',
the symbolization of the expression enclosed between 'both' and 'and' is a
conjunct.

'neither □ nor ○' is equivalent to 'not (either □ or ○)'.

As in chapter 1, these principles do not eliminate all ambiguity. The sentence 'Wilma will leave and Steve
will stay or Tom will dance' is ambiguous between these two symbolizations:

 W & (S∨T)

 (W&S) ∨ T

The use of 'either' will sometimes disambiguate; the only symbolization of 'Wilma will leave and either
Steve will stay or Tom will dance' is:

 W & (S∨T)

This is because 'either' and 'or' exactly enclose 'Steve will stay', and so 'S' must be a disjunct. But it is not
a disjunct in '(W&S) ∨ T'.

Commas play their usual role of grouping items on each side. The sentence 'Wilma will leave and Steve
will stay, or Tom will dance' has only the symbolization:

CHAPTER 2 SECTION 3

Copyrighted material Chapter 2 -- 8

 (W&S) ∨ T

Conjunction and disjunction signs inside of sentences: Sometimes 'and' and 'or' occur within
sentences, as in:

 Wilma sang and danced
 Tom or Sam left

In such cases you need to fill in a missing part to get a sentence that we already know how to symbolize.

Sometimes 'and' or 'or' occurs inside a simple sentence, where only the subject is
conjoined or disjoined, and there is a single predicate, or only the predicate is conjoined
or disjoined, and there is a single subject. If you fill in a copy of the shared part, you will
get a synonymous sentence that we already know how to symbolize.

These are some examples:

 Wilma sang and danced Wilma sang and [Wilma] danced
 Tom or Sam left Tom [left] or Sam left

If there is a 'both' or an 'either, it ends up on the front:

 Both Tom and Sam left Both Tom [left] and Sam left
 Either Tom or Sam left Either Tom [left] or Sam left

 Wilma both sang and danced Both Wilma sang and [Wilma] danced
 Wilma either sang or danced Either Wilma sang or [Wilma] danced.

There may also be a 'not' after the compound subject, or before a compound predicate. If the negation is
after a compound subject, it forms part of the predicate, and it is filled in with that predicate:

 Wilma or Veronica didn't sing Wilma [didn't sing] or Veronica didn't sing.

If the negation is before a compound predicate, it yields a negation sign that applies to the whole
compound:

 Wilma didn't sing or dance ¬(Wilma sang or danced)
 Wilma didn't sing and dance ¬(Wilma sang and danced)

The parts inside the parentheses are then expanded as usual:

 Wilma didn't sing or dance ¬(Wilma sang or [Wilma] danced)
 Wilma didn't sing and dance ¬(Wilma sang and [Wilma] danced)

Compounds within simple sentences affect how sentences are grouped after symbolization:

When connectives occur inside otherwise simple sentences, the symbolizations of the
sentences form a unit.

For example, the sentence 'Ruth tap-dances or sings and she plays the clarinet' must be grouped like this:

 (T ∨ S) & P

This is because the disjunction with 'T' and 'S' must be a unit. In 'Ruth tap-dances or she sings and plays
the clarinet' the opposite happens; you must have:

 T ∨ (S & P)

because the conjunction with 'S' and 'P' must form a unit.

CHAPTER 2 SECTION 3

Copyrighted material Chapter 2 -- 9

Synonyms of 'and', 'or', and 'if and only it' are subject to the conditions described above.

Here are some illustrations:

If neither Wilma nor Sally attends, either Robert or Peter will be bored.

If neither Wilma [attends] nor Sally attends, either Robert [will be bored] or Peter will be bored.

If neither W nor S, either R or P

 ~(W∨S) → (R∨P)

The 'neither' and the 'either' made units, and the comma was redundant.

A slightly more complex case:

If neither Wilma nor Sally attends, either Robert or Peter, but not Tom, will be bored.

If neither Wilma [attends] nor Sally attends, either Robert [will be bored] or Peter [will be bored],
but Tom will not be bored.

If neither W nor S, either R or P, but not T

 ~(W∨S) → (R∨P) & ~T

Here the 'either' made a unit, so the 'but ' could not take 'Peter would be bored' as its left conjunct. That
is, the symbolization could not be this:

~(W∨S) → (R ∨ (P&~T))

Likewise, the original phrase 'either Robert or Peter, but not Tom, will be bored' consists of three simple
sentences all sharing the 'will be bored', so it could not be pulled apart, as in:

(~(W∨S) → (R∨P)) & ~T

Some additional examples:

Either Robert or Tom will attend, but not both
Either Robert [will attend] or Tom will attend, but not both [will attend]

 Either R or T, but not R and T
(R∨T) ∧~(R∧T)

 Robert will attend if Sally does, but she won't attend if neither Tom nor Wilma attend.

Robert will attend if Sally does [attend], but she won't attend if neither Tom [attends] nor Wilma
attends.

 R if S, but not S if neither T nor W
(S→R) ∧(~(T∨W) → ~S)

Neither Sally nor Robert will run, but if either Tom or Quincy run, Veronica will win.
Neither S nor R, but if either T or Q, V
~(S∨R) ∧(T∨Q → V).

Given that Sally and Robert won't both run, Tom will run exactly if Q does.
Given that not both S and R, T exactly if Q.
~(S∧R) → (T↔Q)

A variety of English expressions that we have not mentioned affect how a sentence is to be symbolized.
Examples:

Quincy will whistle if Reggie sings without Susan singing or Susan sings without Reggie, but he
won't whistle if they both sing

CHAPTER 2 SECTION 3

Copyrighted material Chapter 2 -- 10

Q if R and not S or S and not R, but not Q if S and R
((R∧~S) ∨ (S∧~R) → Q) ∧(S∧R → ~Q)

Here 'Reggie sings without Susan singing' means that Reggie sings and Susan doesn't sing.

 If Sally runs, Rob will run, in which case Theodore will leave
 (S→R) ∧ (R→T)

Here ' in which case' means "if Rob runs".

If a symbolization of a sentence is a correct one, then it and the English sentence being symbolized must
agree in truth value no matter what truth values the simple sentences have. If they agree for every
assignment of truth values, then the symbolization is correct. If not, it is incorrect. (To tell whether an
English sentence is true or false given a specification of truth values for its simple parts you must rely on
your understanding of English. To tell whether a symbolic sentence is true or false given the truth values
of its sentential letters, you parse it and figure out its truth value as in section 1.)

EXERCISES

1. If 'P' is true and both 'Q' and 'R' are false, what are the truth values of the following? (In answering, give
a parse tree for the sentence.)

 a. ~(P ∨ (Q ∧ R))
 b. ~P ∨ (Q ∧ R)
 c. ~(P ∨ R) ↔ ~P ∨ R
 d. ~Q ∧ (P ∨ (Q↔R))
 e. P → (~Q ↔ (~R → Q))

For questions 2 and 3, use this translation scheme:
 V Veronica will leave
 W William will leave
 Y Yolanda will leave

2. For each of the following say which of the proposed translations is correct.

 a. Veronica won't leave if and only if William won’t leave
 ~(V ↔ ~W)
 ~V ↔ ~W
 V ↔ ~~W

 b. William and Veronica will both leave if Yolanda does, provided that Veronica doesn’t
 Y∧~V → W∧V
 (Y→W∧V) → ~V
 ~V → (Y→W∧V)

 c. Unless Yolanda leaves, Veronica or William will leave
 Y ∨ (W ∨ V)
 Y → (W ∨ V)
 Y ↔ W ∧ V

 d. Either Yolanda leaves and Veronica doesn't, or Veronica leaves and William doesn’t
 (Y ↔ ~V) ∨ (V ↔ ~W)
 (Y ∧ ~V) ∨ (V ∧ ~W)
 Y ∧ ~V ↔ V ∧ ~W

CHAPTER 2 SECTION 3

Copyrighted material Chapter 2 -- 11

3. For each of the following produce a correct symbolization

 a. Only if Veronica doesn't leave will William leave, or Veronica and William and Yolanda will all

leave
 b. If neither William nor Veronica leaves, Yolanda won't either
 c. If William will leave if Veronica leaves, then he will surely leave if Yolanda leaves
 d. Neither William nor Veronica nor Yolanda will leave

4. What are the truth values of 3a-d if Veronica leaves but neither William nor Yolanda leaves?

For question 5 use this translation scheme:

 R Sally will run
 W Sally will win
 Q Sally will quit

5. For each of the following produce a correct symbolization

 a. Sally will run and win unless she quits
 b. Sally will win exactly in case she runs without quitting
 c. Sally, who will run, will win if she doesn't quit
 d. Sally will run and quit, but she will win anyway

CHAPTER 2 SECTION 4

Copyrighted material Chapter 2 -- 12

4 RULES

Each new connective comes with two new rules. As earlier, it should be obvious from the truth-table
descriptions of each connective that instances of these rules are formally valid arguments.

Conjunction rules:

 Rule s (simplification) Rule adj (adjunction)

 □ ∧ ○ or □ ∧ ○ □
 ∴ □ ∴ ○ ○
 ∴ □ ∧ ○
Disjunction rules:

 Rule add (addition) Rule mtp (modus tollendo ponens)

 □ or □ □ ∨ ○ or □ ∨ ○
 ∴ □ ∨ ○ ∴ ○ ∨ □ ~○ ~□
 ∴ □ ∴ ○
Biconditional rules:

 Rule bc (biconditional-to-conditional) Rule cb (conditionals-to-biconditional)

 □ ↔ ○ or □ ↔ ○ □ → ○
 ∴ □ → ○ ∴ ○ → □ ○ → □
 ∴ □ ↔ ○

Simplification indicates that if you have a conjunction, you may infer either conjunct. For example, both
of these valid arguments are instances of rule s:

 Polk was a president and so was Whitney P ∧ W
 ∴ Polk was a president ∴ P by rule s
 ∴ Whitney was a president ∴ W by rule s

Adjunction indicates that if you have any two sentences, you may infer their conjunction, in either order.
For example, these valid arguments are instances of rule adj:

 Polk was a president P
 Whitney was a president W
 ∴ Polk was a president and so was Whitney ∴ P ∧ W by rule adj
 ∴Whitney was a president and so was Polk ∴ W ∧ P by rule adj

This derivation illustrates how the conjunction rules are used:

 P ∧ Q
 ∴ Q ∧ P

 1. Show Q ∧ P
 2. Q pr1 s
 3. P pr1 s
 4. Q ∧ P 2 3 adj dd

Addition indicates that from any sentence you may infer its disjunction with any other sentence.

 Polk was a president P
 ∴ Polk was a president or Whitney was ∴ P ∨ W by rule add
 ∴ Whitney was a president or Polk was ∴ W ∨ P by rule add

CHAPTER 2 SECTION 4

Copyrighted material Chapter 2 -- 13

Rule add lets you add any disjunct, no matter how irrelevant. So from 'Cynthia left' you may infer 'Cynthia
left ∨ Fido barked'. This is legitimate because '∨' is used inclusively, and all that you need for a disjunction
to be true is that either disjunct be true. So if 'Cynthia left' is true, 'Cynthia left ∨ Fido barked' must be true
too.

Modus tollendo ponens indicates that from a disjunction and the negation of one of its disjuncts you may
infer the other disjunct.

 Polk was a president or Whitney was P ∨ W
 Whitney wasn't a president ~W
 ∴ Polk was a president ∴ P by rule mtp

 Polk was a president or Whitney was P ∨ W
 Polk wasn't a president ~P
 ∴ Whitney was a president ∴ W by rule mtp

Note that the following is not an instance of modus tollendo ponens:

 Whitney was a president or Truman was W ∨ T
 Truman was a president T
 ∴ Whitney wasn't a president ∴ ~W

For mtp you need the negation of a disjunct. In the case given, if 'T' and 'W' were both true, then the
argument would have true premises and a false conclusion.

Here is a derivation illustrating the disjunction rules. It is a derivation for this argument:

 P
 R ∨ ~P
 ∴ R ∨ S

 1. Show R ∨ S
 2. ~~P pr1 dn
 3. R 2 pr2 mtp
 4. R ∨ S 3 add dd

Biconditional-to-conditional indicates that from a biconditional you may infer either of the corresponding
conditionals:

 Polk was a president if and only if Whitney was P ↔ W
 ∴ If Polk was a president, so was Whitney ∴ P → W by rule bc
 ∴ If Whitney was a president, so was Polk ∴ W → P by rule bc

Conditionals-to-biconditional indicates that from two conditionals where the antecedent of one is the
consequent of the other, and vice versa, you may infer a bicondtional containing the parts of the
conditionals:

 If Polk was a president, so was Whitney P → W
 If Whitney was a president, so was Polk W → P
 ∴ Polk was a president if and only if Whitney was ∴ P ↔ W by rule cb

Here are two more derivations using our new rules:

 S ∧ P
 P∨Q → ~R
 Q ∨ R
 ∴ Q

CHAPTER 2 SECTION 4

Copyrighted material Chapter 2 -- 14

 1. Show Q
 2. P pr1 s
 3. P ∨ Q 2 add
 4. ~R 3 pr2 mp
 5. Q 4 pr3 mtp dd

 R ↔ ~P
 ~Q ↔ R
 ∴ P ↔ Q

 1. Show P ↔ Q
 2. Show P → Q
 3. P ass cd
 4. ~~P 3 dn
 5. R → ~P pr1 bc
 6. ~R 4 5 mt
 7. ~Q → R pr2 bc
 8. ~~Q 6 7 mt
 9. Q 8 dn cd
 10. Show Q → P
 11. Q ass cd
 12. ~~Q 11 dn
 13. R → ~Q pr2 bc
 14. ~R 12 13 mt
 15. ~P → R pr1 bc
 16. ~~P 14 15 mt
 17. P 16 dn cd
 18. P ↔ Q 2 10 cb dd

EXERCISES

1. For each of the following arguments, say which rule it is an instance of (or say "none").

 a. P ∨ ~Q b. ~P ∧ Q c. ~~(P→Q)
 Q ∴ ~P ∴ P→Q
 ∴ P

 d. ~P∨Q e. ~P → ~Q f. P ∨ Q
 ~Q ~Q → ~P ~R
 ∴ ~P ∴ ~Q ↔ ~P ∴ P

 g. ~~P ↔ R h. Q i. P ∨ Q
 ∴ R → ~~P ∴ ~P ∨ Q ∴ Q

2. Given the sentences below, say what can be inferred in one step by s, mtp, bc, cb using all of the
premises.

 a. ~W → ~X b. ~W ∨ ~X c. W → X
 ~X → ~W ~~X ~W
 ∴ ? ∴ ? ∴ ?

 d. ~W ∧ ~X e. W ↔ ~X f. W ∨ X
 ∴ ? ∴ ? ∴ ?

CHAPTER 2 SECTION 5

Copyrighted material Chapter 2 -- 15

5 SOME DERIVATIONS USING RULES S, ADJ, CB

Since there are new connectives it is useful to expand our strategy hints from Chapter 1:

Additional Strategy Hints

 When trying to derive a conjunction, derive the conjuncts and then use adj.

 When trying to derive a biconditional, derive the corresponding conditionals and use cb.

These strategy hints will be put to use below, as we extend our list of Theorems from Chapter 1.

Theorem 24 is the commutative law for conjunction; it says that turning the conjuncts of a sentence around
produces a logically equivalent sentence:

T24 P∧Q ↔ Q∧P "commutative law for conjunction"

This is easy to derive if you follow the last two strategy hints. You will be deriving a biconditional, so you
will try to derive both conditionals: P∧Q → Q∧P and Q∧P → P∧Q and then combine them using rule cb.
 While deriving each conditional you will derive a conjunction by deriving its conjuncts and then using rule
adj. Rule s is used whenever you want to get one of the conjuncts of an existing conjunction alone.

 1. Show P∧Q ↔ Q∧P
 2. Show P∧Q → Q∧P
 3. P∧Q ass cd
 4. P 3 s
 5. Q 3 s
 6. Q ∧ P 4 5 adj cd
 7. Show Q∧P → P∧Q
 8. Q ∧ P ass cd
 9. Q 8 s
 10. P 8 s
 11. P ∧ Q 9 10 adj cd
 12. P∧Q ↔ Q∧P 2 7 cb dd

The next theorem is the associative law for conjunction; it says that regrouping successive conjuncts
produces a logically equivalent sentence. The strategy here is the same as that above: to derive the
biconditional you derive the corresponding conditionals, and use rule cb. In deriving the conditionals you
derive conjunctions using rule adj. Again, rule s is used to simplify conjunctions that you already have.

CHAPTER 2 SECTION 5

Copyrighted material Chapter 2 -- 16

T25 P∧ (Q∧R) ↔ (P∧Q)∧ R "associative law for conjunction"

 1. Show P∧ (Q∧R) ↔ (P∧Q)∧ R
 2. Show P∧ (Q∧R) → (P∧Q)∧ R
 3. P∧ (Q∧R) ass cd
 4. P 3 s
 5. Q ∧ R 3 s
 6. Q 5 s
 7. R 5 s
 8. P ∧ Q 4 6 adj
 9. (P∧Q) ∧R 7 8 adj cd
 10. Show (P∧Q)∧ R → P∧ (Q∧R)
 11. (P∧Q)∧ R ass cd
 12. R 3 s
 13. P ∧ Q 3 s
 14. P 5 s
 15. Q 5 s
 16. Q ∧ R 4 6 adj
 17. P∧ (Q∧R) 7 8 adj cd
 18. P∧ (Q∧R) ↔ (P∧Q)∧ R 2 10 cb dd

The next theorem is T26:

T26 (P→Q) ∧(Q→R) → (P→ R) "hypothetical syllogism"

Notice that T26 and T4 from the previous chapter are both called "hypothetical syllogism".

 T4 (P→Q) → ((Q→R) → (P→R)) "hypothetical syllogism"

These two theorems are closely related. They are related to one another as the following two patterns:

 □ ∧ ○ → △
 □ → (○ → △)

where each theorem has 'P→Q' in place of □, 'Q→R' in place of ○, and 'P→R' in place of △. Our next
theorem says that these two patterns are equivalent.

T27 (P∧Q → R) ↔ (P → (Q→R)) "exportation"

The derivation of this theorem is also relatively straightforward: derive two conditionals and put them
together by rule cb. Each conditional itself has conditionals as parts, so the derivation calls for two
conditional subderivations (one of which itself contains another conditional subderivation).

CHAPTER 2 SECTION 5

Copyrighted material Chapter 2 -- 17

 1. Show (P∧Q → R) ↔ (P→ (Q→R))
 2. Show (P∧Q → R) → (P→ (Q→R))
 3. P∧Q → R ass cd
 4. Show P→ (Q→R)
 5. P ass cd
 6. Show Q → R
 7. Q ass cd
 8. P ∧ Q 5 7 adj
 9. R 3 8 mp cd
 10. 6 cd
 11. 4 cd
 12. Show (P→ (Q→R) → (P∧Q → R)
 13. P → (Q→R) ass cd
 14. Show P∧Q → R
 15. P ∧ Q ass cd
 16. P 15 s
 17. Q → R 13 16 mp
 18. Q 15 s
 19. R 17 18 mp cd
 20. 14 cd

 21. (P∧Q → R) ↔ (P→ (Q→R)) 2 12 cb dd

This derivation is complex. It may be useful to see how we might think up how to construct it. First, our
main strategy is to derive a biconditional by deriving two conditionals. So our plan predicts that the
derivation will have this overall structure:

 1. Show (P∧Q → R) ↔ (P→ (Q→R))

 2. (P∧Q → R) → (P→ (Q→R))

 12. (P→ (Q→R) → (P∧Q → R)

 21. (P∧Q → R) ↔ (P→ (Q→R)) 2 12 cb dd

Line 2 will require a conditional derivation, and so will line 12. So the completed derivation will take this
form:
 1. Show (P∧Q → R) ↔ (P→ (Q→R))
 2. Show (P∧Q → R) → (P→ (Q→R))
 3. P∧Q → R ass cd

 P → (Q→R) xxx cd

 12. Show (P→ (Q→R) → (P∧Q → R)
 13. P → (Q→R) ass cd

 P∧Q → R xxx cd

 21. (P∧Q → R) ↔ (P→ (Q→R)) 2 12 cb dd

CHAPTER 2 SECTION 5

Copyrighted material Chapter 2 -- 18

Lines 3-11 and 14-20 are taken up with completing the subderivations. Each of these itself uses a
conditional subderivation, giving the following structure:

 1. Show (P∧Q → R) ↔ (P→ (Q→R))
 2. Show (P∧Q → R) → (P→ (Q→R))
 3. P∧Q → R ass cd
 4. Show P→ (Q→R)
 5. P ass cd
 10. xxx cd
 11. 4 cd

 12. Show (P→ (Q→R) → (P∧Q → R)
 13. P → (Q→R) ass cd
 14. Show P∧Q → R
 15. P ∧ Q ass cd

19. xxx cd

 20. 14 cd

 21. (P∧Q → R) ↔ (P→ (Q→R)) 2 12 cb dd

The rest of the work is filling in the remaining subderivations. It is often useful to develop a derivation as
we did here by first sketching its overall structure, and then flesh it out with details afterwards.

EXERCISES

1. Produce derivations for theorems T28-T30, T33, T36-37, which are included among the theorems
stated here:

T28 (P∧Q → R) ↔ (P∧~R → ~Q)
T29 (P→ Q∧R) ↔ (P→Q) ∧(P→R) "distribution of → over ∧"

T30 (P→Q) → (R∧P → R∧Q)
T31 (P→Q) → (P∧R → Q∧R)
T32 (P→R) ∧(Q→S) → (P∧Q → R∧S) "Leibniz's praeclarum theorema"

T33 (P→Q) ∧(~P→Q) → Q "separation of cases; constructive dilemma"

T34 (P→Q) ∧(P→~Q) → ~P "reductio ad absurdum"

T35 (~P→R) ∧(Q→R) ↔ ((P→Q) → R)
T36 ~(P ∧ ~P) "non-contradiction"

T37 (P→Q) ↔ ~(P ∧ ~Q)

CHAPTER 2 SECTION 6

Copyrighted material Chapter 2 -- 19

6 ABBREVIATING DERIVATIONS

It is useful in writing derivations to be able to combine two or more steps into one. For example, here is a
derivation in which double negation is used twice:

 P
 ~Q → ~P
 Q → R
 ∴ R

 1. Show R
 2. ~~P pr1 dn
 3. ~~Q 2 pr2 mt
 4. Q 3 dn
 5. R 4 pr3 mp dd

One can shorten this derivation by two steps by combining the double negations with other rules, like this:

 1. Show R
 2. ~~Q pr1 dn pr2 mt
 3. R 2 dn pr3 mp dd

The meanings of the notations at the end of the lines are:

 2. " pr1 dn pr2 mt " take pr1 and double negate it; then combine the result with pr2 by mt to get ~~Q

 3. "2 dn pr3 mp " double (un)negate the sentence on line 2; then combine the result with pr3 using

modus ponens

Here is a more highly abbreviated derivation.

 P ∧ Q
 R → ~Q
 S∨~R → T
 ∴ T ∧ P

1. Show T ∧ P

2. ~R pr1 s dn pr2 mt simplify pr1 to get Q, then double negate Q to
 get ~~Q; use mt on this and pr2 to get ~R

3. T 2 add pr3 mp apply add to the sentence on line 2 to get

S ∨ ~R; then apply mp to that and pr3 to get T

4. T ∧ P pr1 s 3 adj dd simplify pr1 to get P and then adjoin this with the
 sentence on line 3 to get T∧P.

Abbreviations of this sort may always be interpreted by the following "decoding procedure", starting at the
left and moving right:

 A line number or premise number gives you a sentence -- the sentence on that line.

 Rule r also gives you a sentence -- the sentence on the line cited.

A sentence followed by 'dn', 's', 'add' or 'bc' gives you the result of applying that rule to that
sentence. (The old sentence is no longer available for further use.)

Two sentences followed by 'mp', 'mt', 'adj', 'cb' give you the result of applying that rule to them.

CHAPTER 2 SECTION 6

Copyrighted material Chapter 2 -- 20

If you can apply this decoding and end up with the sentence on the line which has the abbreviations at its
end, the line is correct. If you can't, the line is not correct. (There is sometimes more than one way to
apply a rule to a sentence, so there may be many ways to use the decoding process. If at least one way
of using it ends you up with the sentence on the line, the abbreviation is correct; otherwise it is incorrect.)

Applied to the abbreviations on lines 2, 3 and 4 above the decoding looks like this. We work from the left.
First, the leftmost 'pr1' is replaced by the first premise:

 2. pr1 s dn pr2 mt

 2. P∧Q s dn pr2 mt

Then rule s acts on this to produce 'Q':

 2. P∧Q s dn pr2 mt

 2. Q dn pr2 mt

Then double negation turns 'Q' into '~~Q':

 2. Q dn pr2 mt

 2. ~~Q pr2 mt

Then pr2 is replaced by the second premise:

 2. ~~Q pr2 mt

 2. ~~Q R → ~Q mt

Finally, rule mt acts on '~~Q' and 'R → ~Q' to give you '~R', which is the sentence that actually appears on
line 2:

 2. ~~Q pr2 mt

 2. ~R

Line 3 is decoded by the same process:

 3. 2 add pr3 mp

 3. ~R add pr3 mp

 3. S ∨ ~R pr3 mp

 3. S ∨ ~R S∨~R → T mp

 3. T

CHAPTER 2 SECTION 6

Copyrighted material Chapter 2 -- 21

Likewise for line 4:

 4. pr1 s 3 adj

 4. P∧Q s 3 adj

 4. P 3 adj

 4. P T adj

 4. T∧P

A long string of abbreviations can be difficult to decode, so we will confine ourselves to simple cases.

EXERCISES

1. Use the method of abbreviating derivations to produce shortened derivations for T38, T40-43.

T38 P∧Q ↔ ~(P → ~Q)
T39 ~(P∧Q) ↔ (P → ~Q)
T40 ~(P → Q) ↔ P∧~Q "negation of conditional"

T41 P ↔ P∧P "idempotence for ∧"

T42 P∧~Q → ~(P→Q) "negation of conditional"

T43 ~P → ~(P∧Q)
T44 ~Q → ~(P∧Q)

CHAPTER 2 SECTION 7

Copyrighted material Chapter 2 -- 22

7 USING THEOREMS AS RULES

In Chapter 1 we learned a way to introduce instances of previously derived theorems into a derivation.
Theorems are even more useful when they are used to justify rules. The fundamental principle is that if a
theorem has been derived that has the form of a conditional, it can be cited as a rule which allows you to
infer one sentence from another whenever the conditional made from those sentences is an instance of
the theorem.

A theorem of conditional form:

 ∴ □ → ○

justifies a rule of this form:

 □
 ∴ ○

For example, T13 ("transposition") is (P→Q) → (~Q→~P). This validates the rule:

 □ → ○
 ∴ ~○ → ~□

We name such a rule by writing 'R' in front of the name of the theorem being used. An example of a use
of a theorem as a rule is:

 8. S → T
 9. ~T → ~S 8 RT13

Here are two arguments, and derivations, that use some theorems from Chapter 1 as rules.

 ~(Q∧~R) → P
 P → Q
 R → ~P
 ∴ ~(Q → R)

 1. Show ~(Q → R)
 2. Q → R ass id
 3. (Q→R) → (P→R) pr2 RT4 T4 is (P→Q) → ((Q→R) → (P→R))
 4. P → R 2 3 mp
 5. (R→~P) → (P→~P) 4 RT4
 6. P → ~P pr3 5 mp
 7. ~P 6 RT20 T20 is (P→~P) → ~P
 8. ~~(Q∧~R) pr1 7 mt
 9. Q ∧ ~R 8 dn
 10. Q 9 s
 11. R 2 10 mp
 12. ~R 9 s 11 id

 S → T
 T → (Q → P)
 S → Q
 ∴ S → P

 1. Show S → P
 2. S → (Q→P) pr1 pr2 RT4 T4 is (P→Q) → ((Q→R) → (P→R))
 3. (S→Q) → (S→P) 2 RT6 T6 is (P→(Q→R)) → ((P→Q) → (P→R))
 4. S → P pr3 3 mp dd

CHAPTER 2 SECTION 7

Copyrighted material Chapter 2 -- 23

Theorems can be used to make rules in two more ways. One way applies when a theorem is a
biconditional. Since a biconditional is logically equivalent to two conditionals, it makes sense to use the
theorem as if it were two conditionals.

A theorem of biconditional form:

 ∴ □ ↔ ○

validates both of these rules:

 □ ○
 ∴ ○ ∴ □

An example is T27: '(P∧Q→R) ↔ (P→(Q→R))' which validates both of these:

RT27 □∧○ → △ RT27 □ → (○→△)
 ∴ □ → (○→△) ∴ □∧○ → △

A final additional way to use theorems as rules is possible when a theorem is a conditional whose
antecedent is a conjunction. This gives a rule which has multiple premises.

A theorem of this form:

 ∴ □∧○ → △

justifies a rule of this form:

 □
 ○
 ∴ △

An example is T26: (P→Q) ∧(Q→R) → (P→R)

which validates:

 RT26 □ → ○
 ○ → △
 ∴ □ → △

These options combine, so that if one side of a biconditional is a conjunction, it validates a rule with
multiple premises. For example, T38 (below) is 'P∧Q ↔ ~(P→~Q)', and one of the rules that it validates
is:
 RT38 □
 ○
 ∴ ~(□→~○)

CHAPTER 2 SECTION 7

Copyrighted material Chapter 2 -- 24

EXERCISES

1. For each of the following derivations, determine which lines are correct and which incorrect. (In
assessing a line, assume that previous lines are correct.)

∴ ((U→V) → S) → (~S → U)

 1. Show ((U→V) → S) → (~S → U)
 2. (U→V) → S ass cd
 3. Show ~S → U
 4. ~S ass cd
 5. ~S → ~(U→V) 2 RT13 T13 is (P→Q) → (~Q → ~P)
 6. ~(U → V) 4 5 mp
 7. U 6 RT21 cd T21 is ~(P→Q) → P
 8. 3 cd

∴ ~V ∧ (W → V∧U) → (~W → ~S)

 1. Show ~V ∧ (W → V∧U) → (~W → ~S)
 2. ~V ∧ (W → V∧U) ass cd
 3. ~V 2 s
 4. ~(V∧U) 3 RT43 T43 is ~P → ~(P∧Q)
 5. W → V∧U 2 s
 6. ~W 4 5 mt
 7. ~(W∧S) 6 RT43
 8. ~W → ~S 7 RT39 cd T39 is ~(P∧Q) ↔ (P→~Q)

Some more theorems:

 T45 P∨Q ↔ (~P→Q)
 T46 (P→Q) ↔ ~P ∨ Q "definition of → in terms of ∨"

 T47 P ↔ P∨P "idempotence for ∨"

 T48 (P∨Q) ∧(P→R) ∧(Q→S) → R∨S
 T49 (P∨Q) ∧(P→R) ∧(Q→R) → R "separation of cases"

 T50 (P→R) ∧(Q→R) ↔ (P∨Q→R)

2. Construct a derivation for T45, and then use RT45 to derive T46

3. Construct derivations for T47 and T48, and construct a derivation for T49 using RT47 and RT48

4. Use RT49 in constructing a derivation for T50.

5. Derive T53.

Some additional theorems are given here for reference.

T51 (P∨Q) ∧(P→R) ∧(~P∧Q→R) → R
T52 (P→R) ∧(~P∧Q→R) ↔ (P∨Q→R)

CHAPTER 2 SECTION 7

Copyrighted material Chapter 2 -- 25

T53 P∨Q ↔ Q∨P "commutative law for ∨"

T54 P ∨ (Q∨R) ↔ (P∨QR) ∨ R "associative law for ∨"

T55 (P → Q∨R) ↔ (P→Q) ∨ (P→R) "distribution of → over ∨"

T56 (P→Q) → (R∨P → R∨Q)
T57 (P→Q) → (P∨R → Q∨R)
T58 (P→Q) ∨ (Q→R)
T59 P ∨ ~P "excluded middle"

T60 (P→R) ∨ (Q→R) ↔ (P∧Q → R)
T61 P∧ (Q∨R) ↔ (P∧Q) ∨ (P∧R) "distribution"

T62 P∨(Q∧R) ↔ (P∨Q) ∧(P∨R) "distribution"

8 DERIVED RULES

We now have over fifty theorems that can be used as rules, with more to come. There are too many of
these to remember easily. It is customary to isolate a small number of rules based on the theorems and
give them special names, and use these rules frequently in derivations. In this section we look at five of
these.

Rule nc (negation of conditional): 'Negation of conditional' is an easy-to-remember name for rule RT40
(which is "~(P→Q) ↔ P∧~Q"). It applies in either of these forms:

Rule nc
 ~(□→○) □ ∧ ~○

 ∴ □ ∧ ~○ ∴ ~(□→○)

This rule is often useful when you are trying to derive a conditional when a conditional derivation isn't
working for you. Instead of assuming the antecedent of the conditional in order to use cd, assume the
negation of the conditional for an indirect derivation. Then turn this negated conditional into a conjunction
of the antecedent with the negation of its consequent. This gives you a lot to work with in continuing the
derivation. As an example, suppose you are trying to validate this argument:

 R → Q
 R ∨ S
 S → R
 ∴ P → Q

You begin the derivation:

 1. Show P → Q

You may now assume 'P' for purposes of doing a conditional derivation. But 'P' does not occur among the
premises, and you may not see how to proceed. Instead of trying a conditional derivation, begin an
indirect derivation:

 1. Show P → Q
 2. ~(P→Q) ass id

Then apply the derived rule nc:

CHAPTER 2 SECTION 8

Copyrighted material Chapter 2 -- 26

 1. Show P → Q
 2. ~(P→Q) ass id
 3. P ∧ ~Q 2 nc

It is now fairly easy to simplify off '~Q', and use it to derive a contradiction:

 1. Show P → Q
 2. ~(P→Q) ass id
 3. P ∧ ~Q 2 nc
 4. ~Q 3 s
 5. ~R 4 pr1 mt
 6. S 5 pr2 mtp contradictories
 7. R 6 pr3 mp

So you can finish the indirect derivation:

 1. Show P → Q
 2. ~(P→Q) ass id
 3. P ∧ ~Q 2 nc
 4. ~Q 3 s
 5. ~R 4 pr1 mt
 6. S 5 pr2 mtp
 7. R 6 pr3 mp 5 id

Rule cdj (conditional as disjunction): This rule is constituted by T45 and T46, which together assert
the equivalence of a conditional with a disjunction whose left disjunct is the negation (or unnegation) of the
antecedent of the conditional and whose right disjunct is the consequent. Rule cdj has four cases:

Rule cdj
 □ → ○ ~□ ∨ ○ ~□ → ○ □ ∨ ○
 ∴ ~□ ∨ ○ ∴ □ → ○ ∴ □ ∨ ○ ∴ ~□ → ○

This rule can be useful when attempting to derive a disjunction. Instead of deriving the disjunction directly,
derive the conditional whose antecedent is the (un)negation of the left disjunct and whose consequent is
the other disjunct. This can usually be done using a conditional derivation. Then turn the result of the
conditional derivation into the disjunction you are after using derived rule cdj.

Here is a derivation of T54 using cdj together with T53, which was derived in the exercises for the last
section. The overall structure of the derivation is to derive the biconditional by using two conditional
derivations to get the corresponding conditionals, and then use rule cb.

CHAPTER 2 SECTION 8

Copyrighted material Chapter 2 -- 27

T54 P ∨ (Q∨R) ↔ (P∨Q) ∨ R

 1. Show P ∨ (Q∨R) ↔ (P∨Q) ∨ R
 2. Show P ∨ (Q∨R) → (P∨Q) ∨ R
 3. P ∨ (Q∨R) ass cd
 4. Show ~R → (P∨Q)
 5. ~R ass cd
 6. Show ~P → Q
 7. ~P ass cd
 8. Q∨R 3 7 mtp
 9. Q 5 8 mtp cd
 10. P ∨ Q 6 cdj cd cdj
 11. R ∨ (P∨Q) 4 cdj cdj
 12. (P∨Q) ∨ R 11 RT53 cd
 13. Show (P∨Q) ∨ R → P ∨ (Q∨R)

 LIKE LINES 3-12 <with two uses of cdj> cdj twice

 24. P ∨ (Q∨R) ↔ (P∨Q) ∨ R 2 13 cb

Rule sc (separation of cases): This is a combination of RT33 and RT49. It validates these inferences:

 Rule sc
 □ ∨ ○ □ → △
 □ → △ ~□ → △
 ○ → △ ∴ △
 ∴ △

The first form of rule sc (on the left) says that if you are given that at least one of two cases hold (the first
premise), and if each of them imply something (the second and third premises), then you can conclude
that thing.

The second form of rule sc (on the right) applies when one of the two cases is the negation of the other.
Then their disjunction (P ∨ ~P) is logically true, and needn't be stated as an additional premise. (See
below for illustration.)

Rule sc is especially useful when other attempts to produce a derivation have failed. For example, if you
have a disjunction on an available line, then see if you can do two conditional derivations, each starting
with one of the disjuncts, and each reasoning to the desired conclusion. If you can do this, the first form of
sc applies. As an example, suppose you are given this argument:

 V ∨ W
 W → ~X
 ~U → X
 ∴ U ∨ V

It may not be apparent how to proceed. So consider separation of cases. You have available a
disjunction, 'V ∨ W', which is the first premise. If you can derive both V → U∨V and W → U∨V, the rule sc
will give you the desired conclusion:

CHAPTER 2 SECTION 8

Copyrighted material Chapter 2 -- 28

 1. Show U ∨ V
 2. Show V → U∨V
 3. V ass cd
 4. U ∨ V 3 add cd
 5. Show W → U∨V
 6. W ass cd
 7. ~X 6 pr2 mp
 8. U 7 pr3 mt dn
 9. U ∨ V 8 add cd
 10. U ∨ V pr1 2 5 sc dd

When you don't have a disjunction to work with, you may be able to use the second form of sc. Suppose
you have this argument:

 R∧S → Q
 R → S
 ∴ R → Q

In applying the second form of sc, you need to choose something which will serve as the antecedent for a
conditional whose consequent is the desired conclusion, and whose negation will also serve as the
antecedent for a conditional whose consequent is the desired conclusion. What should you choose?
Often there is more than one choice that will work. In the case we are given, 'R' will work for this purpose.
 That is, you will indeed be able to derive both of these:

 R → (R→Q)
 ~R → (R→Q)

The second form of rule sc will then give you the desired conclusion:

 1. Show R → Q
 2. Show R → (R→Q) derive 'R → (R→Q)'
 3. R ass cd
 4. S 3 pr2 mp
 5. Q 3 4 adj pr1 mp cd
 6. Show ~R → (R → Q) derive '~R → (R→Q)'
 7. ~R ass cd
 8. Show R → Q
 9. R ass cd
 10. ~R 7 r id
 11. 8 cd
 12. R → Q 2 6 sc dd apply the second form of sc

Rule dm (DeMorgan's): This is a very useful rule. It lets you replace negations of conjunctions with
modified disjunctions, and vice versa. It consists of any application of the rules based on theorems T63-
T66:

CHAPTER 2 SECTION 8

Copyrighted material Chapter 2 -- 29

T63 P ∧ Q ↔ ~(~P∨~Q)
T64 P ∨ Q ↔ ~(~P∧~Q)
T65 ~(P∧Q) ↔ ~P ∨ ~Q
T66 ~(P∨Q) ↔ ~P ∧ ~Q

So it allows any of the following inferences:

Rule dm
 □ ∧ ○ □ ∨ ○ ~(□∧○) ~(□∨○)
 ∴ ~(~□∨~○) ∴ ~(~□∧~○) ∴ ~□ ∨ ~○ ∴ ~□ ∧ ~○

 ~(~□∨~○) ~(~□∧~○) ~□ ∨ ~○ ~□ ∧ ~○
 ∴ □ ∧ ○ ∴ □ ∨ ○ ∴ ~(□∧○) ∴ ~(□∨○)

It may be easiest to remember these forms by remembering T63 and T64 in this form:

 conjunction disjunction
 A negation of a is equivalent to the of the negations of its parts. disjunction conjunction

DeMorgan's rule can be handy when you are trying to derive a disjunction. To use it, you assume the
negation of the disjunction for an indirect derivation. Rule dm lets you turn that negation into a
conjunction, and then you have both conjuncts to use in deriving a contradiction. Example:

 P → U
 P ∨ Q
 Q → V
 ∴ U ∨ V

 1. Show U ∨ V
 2. ~(U∨V) ass id
 3. ~U ∧ ~V 2 dm
 4. ~P 3 s pr1 mt
 5. Q 4 pr2 mtp
 6. V 5 pr3 mp
 7. ~V 3 s 6 id

Rule nb (negation of biconditional): This rule is an application of T90:

 ~(P↔Q) ↔ (P↔~Q)

The rule sanctions these inferences:

Rule nb
 ~(□↔○) □ ↔ ~○

 ∴ □ ↔ ~○ ∴ ~(□↔○)

CHAPTER 2 SECTION 8

Copyrighted material Chapter 2 -- 30

The first form is handy if you have the negation of a biconditional. The rule lets you infer a biconditional,
which simplifies into two conditionals, which can be very useful. Here is an example:

 ~(P↔Q)
 ~Q
 ∴ P

 1. Show P
 2. ~(P ↔ Q) pr
 3. P ↔ ~Q 2 nb
 4. ~Q → P 3 bc
 5. P 4 pr2 mp dd

The second form is handy if you want to derive the negation of a biconditional. Just derive the related
biconditional, say by using conditional derivations to derive the associated conditionals. Example:

 P → (R↔Q)
 R → ~Q
 S → Q
 ~R → S
 ∴ ~P

 1. Show ~P
 2. Show ~Q → R
 3. ~Q ass cd
 4. ~S 3 pr3 mt
 5. ~~R 4 pr4 mt
 6. R 5 dn cd
 7. R ↔ ~Q pr2 2 cb
 8. ~(R↔Q) 7 nb
 9. ~P 8 pr1 mt dd

EXERCISES

1. For each of the following derivations, determine which lines are correct and which incorrect. (In
assessing a line, assume that previous lines are correct.)

a. (U→S) → Q
 P∨R → S
 ~(T→Q)
 ∴ ~P

 1. Show ~P
 2. T ∧ ~Q pr3 nc
 3. ~(U→S) 2 s pr1 mt
 4. U ∧ ~S 3 nc
 5. ~(P∨R) 4 s pr2 mt
 6. ~P ∧ ~R 5 dm
 7. ~P 6 s dd

CHAPTER 2 SECTION 8

Copyrighted material Chapter 2 -- 31

b. ~X ∨ W
 ~(V ↔ W)
 ~(W ↔X) ∨ V
 ∴ ~W

 1. Show ~W
 2. Show W → X
 3. W ass cd
 4. X 3 pr1 mtp
 5. Show X → W
 6. X ass cd
 7. X → W pr1 cdj dd
 8. W ↔ X 2 5 bc
 9. V 8 dn pr3 mtp
 10. V ↔ ~W pr2 nb
 11. ~W 9 10 mp dd

c. (X →U) → (Y→Z)
 ~(Y ∨ ~Z)
 ∴ ~U

 1. Show ~U
 2. ~Y ∧ Z pr2 dm
 3. ~(Y → Z) 2 nc
 4. ~(X → U) 3 4 mt
 5. X ∧ ~U 4 nc
 6. ~U 5 s dd

2. Construct correct derivations for each of the following arguments using derived rules when convenient.

a. U∧V → X <use dm>
 ~V → Y
 X∨Y → Z
 ∴ ~Z → ~U

b. (X→Y) → Z <use nc>
 ~Z
 V → Y
 ∴ ~V

c. P ∨ Q
 Q → S
 U ∨ ~S
 P∨S → R
 R → U
 ∴ U

CHAPTER 2 SECTION 9

Copyrighted material Chapter 2 -- 32

9 OFFICIAL CONDITIONS FOR DERIVATIONS

Let us summarize here what we can now use in constructing an unabbreviated derivation.

UNABBREVIATED DERIVATIONS
A derivation from a set of sentences P consists of a sequence of lines that is built up in order, step by
step, where each step is in accordance with these provisions:

• Show line: A show line consists of the word "Show" followed by a symbolic sentence. A show
line may be introduced at any step. Show lines are not given a justification.

• Premise: At any step, any symbolic sentence from the set P may be introduced, justified with the
notation "pr".

• Theorem: At any step, an instance of a previously proved theorem may be entered with the name
of the theorem given as justification. (e.g. "T32")

• Rule: At any step, a line may be introduced if it follows by a rule from sentences on previous
available lines; it is justified by citing the numbers of those previous lines and the name of the rule.
 This includes the following basic rules:

 r mp mt dn s
 adj add mtp bc cb

It also includes rules based on previously derived theorems, where the name of a rule based on a
theorem is "R" followed by the name of the theorem; e.g. "RT32". If the appropriate enabling
theorems have been derived, these rules are also available for use:

 nc cdj sc dm nb
• Direct derivation: When a line (which is not a show line) is introduced whose sentence is the

same as the sentence on the closest previous uncancelled show line, one may, as the next step,
write "dd" following the justification for that line, draw a line through the word "Show", and draw a
box around all the lines below the show line, including the current line.

• Assumption for conditional derivation: When a show line with a conditional sentence is
introduced, as the next step one may introduce an immediately following line with the antecedent
of the conditional on it; the justification is "ass cd".

• Conditional derivation: When a line (which is not a show line) is introduced whose sentence is
the same as the consequent of the conditional sentence on the closest previous uncancelled show
line, one may, as the next step, write "cd" at the end of that line, draw a line through the word
"Show", and draw a box around all the lines below the show line, including the current line.

• Assumption for indirect derivation: When a show line is introduced, as the next step one may
introduce an immediately following line with the [un]negation of the sentence on the show line; the
justification is "ass id".

• Indirect derivation: When a sentence is introduced on a line which is not a show line, if there is a
previous available line containing the [un]negation of that sentence, and if there is no uncancelled
show line between the two sentences, as the next step you may write the line number of the first
sentence followed by "id" at the end of the line with the second sentence. Then you cancel the
closest previous "show", and box all sentences below that show line, including the current line.

Except for steps that involve boxing and canceling, every step introduces a line. When writing out a
derivation, every line that is introduced is written directly below previously introduced lines.

Optional variant: When boxing and canceling with direct or conditional derivation, the "dd" or "cd"
justification may be written on a later line which contains no sentence at all, and which is followed by the
number of the line that completes the derivation. With indirect derivation, the "id" justification may be
written on a later line which contains no sentence at all, and which is followed by the numbers of the two
lines containing contradictory sentences. In all cases, the lines cited must be available from the later line.

CHAPTER 2 SECTION 9

Copyrighted material Chapter 2 -- 33

Some additional strategic hints

Now that we have connectives in addition to the negation and conditional signs, we can give some general
hints for doing derivations containing them. These have all been illustrated above, and they will simply be
stated here for convenience. First are strategies that are often useful for deriving certain forms of
sentences.
If you want to derive a Conjunction □ ∧ ○
 Derive each conjunct (perhaps by id) and adjoin them

If you want to derive a Disjunction □ ∨ ○
 Derive either disjunct and use add.
 Assume '~(□ ∨ ○)' for id, and use dm.
 Derive '~□ → ○', perhaps by cd, and use cdj

If you want to derive a Biconditional □ ↔ ○
 Derive each conditional and use cb.

If you want to derive a Negation of a conjunction ~(□ ∧ ○)
 Use id.

If you want to derive a Negation of a disjunction ~(□ ∨ ○)
 Derive '~□ ∧ ~○' and use dm.

Perhaps assume '□ ∨ ○' for id, and try to derive both '□ → P∧~P' and '○→P∧~P'. Then use sc
(applied to the assumed '□ ∨ ○' and the conditionals) to derive 'P∧~P'.

If you want to derive a Negation of a biconditional ~(□ ↔ ○)
 Derive '□ ↔ ~○' and use nb.

Then there are situations in which you have available a certain form of sentence, and want to know how to
make use of it.

If you have available a Conjunction □ ∧ ○
 Simplify and use the conjuncts singly.

If you have available a Disjunction □ ∨ ○
 Try to derive the negation of one of the disjuncts, and use mtp

Derive the conditionals '□ → △' and '□ → △', where '△' is something you want to derive. Then
use sc with the disjunction and two conditionals.

If you have available a Biconditional □ ↔ ○

Infer both conditionals and use them with mp, mt, and so on.

If you have available a Negation of a conjunction ~(□ ∧ ○)

Use dm to turn this into '~□ ∨ ~○', and then try to derive either '□' or '○' to use mtp.

If you have available a Negation of a disjunction ~(□ ∨ ○)

Use dm to turn this into '~□ ∧ ~○'; then simplify and use the conjuncts singly.

If you have available a Negation of a biconditional ~(□ ↔ ○)

Use nb to turn this into '□ ↔ ~○', and use bc to get the corresponding conditionals.

CHAPTER 2 SECTION 9

Copyrighted material Chapter 2 -- 34

EXERCISES

1. Construct correct derivations for each of the following arguments.

a. ~(P ↔ Q) <use nb>
 R ∨ P
 ~Q → R
 ∴ R

b. W → U <use cdj>
 ~W → V
 ∴ U ∨ V

c. P ∨ (Q∧S)
 R ∨ Q
 S ∨ ~P
 Q → ~S
 ∴ R

10 TRUTH TABLES AND TAUTOLOGIES

The sentence 'P ∨ ~P' is logically true. It is true in all logically possible situations. This can be established
by simple reasoning:

Although there are an infinite number of logically possible situations, they fall into two classes.
One class consists of situations in which 'P' is true, and the other consists of situations in which 'P'
isn't true. In any situation in the first class, 'P ∨ ~P' is true because it is a disjunction whose first
disjunct is true. In any situation in the second class, 'P' is not true in that situation, and so its
negation, '~P' is true, and again 'P ∨ ~P' is true because it is a disjunction which has a true
disjunct. So in either class of situations 'P ∨ ~P' is true.

This pattern of reasoning can be summed up using a truth table. The table begins with listing the two
options for the truth value of 'P' in a class of situations:

 P ~P
situations in which 'P' is true T
situations in which 'P' is false F

The truth value of '~P' is determined in each class:

 P ~P
situations in which 'P' is true T F
situations in which 'P' is false F T

and that information determines the truth value of 'P ∨ ~P' in each class:

 P ~P P ∨ ~P
situations in which 'P' is true T F T
situations in which 'P' is false F T T

This is an example in which no matter what truth value the simple parts of the sentence have, the
sentence itself is true. Such a sentence is called a "tautology":

CHAPTER 2 SECTION 10

Copyrighted material Chapter 2 -- 35

Tautology: A sentence is a tautology if no matter what truth values are
assigned to its simple parts, the definitions of the connectives used in the
sentence determine that the sentence is true.

The truth table just given shows that 'P ∨ ~P' is a tautology, because it shows that 'P ∨ ~P' is true no
matter how truth values are assigned to its atomic parts.

This use of truth tables can be applied to a sentence of any degree of complexity. Here is an example
showing that 'P∧Q → Q' is a tautology. We begin by listing all of the possible combinations of truth values
that 'P' and 'Q' might have. There are four of these: the sentences are both true, the first is true and the
second false, the first is false and the second true, or they are both false:

P Q P ∧ Q P∧Q → Q
T T
T F
F T
F F

This assignment of truth values to 'P' and to 'Q' determines the truth values of 'P ∧ Q' and of 'P∧Q → Q';
for 'P∧Q → Q':

P Q P ∧ Q P∧Q → Q
T T T T
T F F T
F T F T
F F F T

In this table there are all T's under 'P∧Q → Q', showing that it is a tautology.

To handle sentences of arbitrary numbers of sentence letters, we need to have a systematic way of
representing all of the possible combinations of truth values that the sentence letters can receive. One
way of doing this is to list all of the atomic parts of the sentence on the top of the table. Then, underneath
the rightmost letter, write alternations of T and F:

P Q R
 T
 F
 T
 F
 T
 F
 T
 F

Under the next letter to its left write alterations of TT and FF:

P Q R
 T T
 T F
 F T
 F F
 T T
 T F
 F T
 F F

Under the next, write alterations of TTTT and FFFF:

CHAPTER 2 SECTION 10

Copyrighted material Chapter 2 -- 36

P Q R
T T T
T T F
T F T
T F F
F T T
F T F
F F T
F F F

Do this until the leftmost letter has gone through one whole set of alterations. If there is one sentence
letter, only two rows are required. If there are two, the table will contain four rows. If three, then eight.
And so on. There are always 2n rows in the table when there are n sentence letters.

Next, write the sentence to be tested, and underneath it write in each row the truth value that it has when
its parts have the truth values appearing on that row. An example is:

P Q R P∧Q → P∧R
T T T T
T T F F not a tautology
T F T T
T F F T
F T T T
F T F T
F F T T
F F F T

Since there is a row (the second row) in which 'P∧Q → P∧R' does not have a T, that sentence is not a
tautology.

If there is a T in every row, it is a tautology, as in this case:

P Q R P∧Q → P∨R
T T T T
T T F T
T F T T
T F F T
F T T T
F T F T
F F T T
F F F T

This method is completely mechanical and it always yields an answer in a finite amount of time.

If a sentence is a tautology, then you need to fill in every one of its rows to show that every one is T. But if
a sentence is not a tautology, you need only find one row in which the sentence comes out F. For
example, the following partial truth table shows that 'P∨Q ↔ R∨Q' is not a tautology:

CHAPTER 2 SECTION 10

Copyrighted material Chapter 2 -- 37

P Q R P∨Q ↔ R∨Q
T T T
T T F
T F T
T F F F
F T T
F T F
F F T
F F F

If a sentence is not a tautology and if you can identify what assignment of truth values to the simple parts
will show this, you needn't set up a whole truth table. Just give a single row:

P Q R P∨Q ↔ R∨Q
T F F F

and state that this assignment of truth values to sentence letters makes the sentence false.

It turns out that every theorem of the first two chapters of this text is a tautology. This is because the rules
and techniques in these chapters only allow derivations of tautologies when no premises are used. It is
also a fact that any tautology can be derived by the rules we have. So we have two ways to show
tautologies: theorems and truth tables, and we have one way to show non-tautologies: truth tables.

EXERCISES

1. Use truth tables or truth value assignments to determine whether each of these is a tautology.

 a. (R↔S) ∨ (R↔~S)
 b. R ↔ (S↔R)
 c. R ∨ (S∧T) → R ∧ (S∨T)
 d. ~U → (U→~V)
 e. (~R↔R) → S
 f. (S∧T) ∨ (S∧~T) ∨ ~S

11 TAUTOLOGICAL IMPLICATION

It is easy to show by doing a derivation that this argument is valid:

 P ∧ P
 ∴ P

It is also possible to show that the argument is valid using a technique like that of truth tables. Just show
that there is no logically possible situation in which the premise is true and the conclusion false. This can
be done as follows:

All logically possible situations can be divided into two classes. In one class of situations, 'P' is
true; no situation of this sort can be one in which the argument has true premises and a false
conclusion, because in any of these situations the conclusion, 'P', is true. In all other situations,
'P' is false. But then so is 'P∧P'. So none of these are situations in which the argument has true
premises and a false conclusion. So it is valid.

Generalizing, we can say that an argument is valid whenever the premises "tautologically imply" the
conclusion. Tautological implication is defined as follows:

CHAPTER 2 SECTION 11

Copyrighted material Chapter 2 -- 38

 A set of sentences tautologically implies a given sentence if and only if

there is no assignment of truth values to the atomic parts which make the
sentences in the set all true and the given sentence false.

There is a mechanical way to test a set of sentences to see if they tautologically imply a given sentence.
Just create a truth table in which all of the sentences in the set, along with the given sentence, each
appear at the top of some column. If there is no row in which all of the sentences in the set have T's under
them and the given sentence has an F, then that set tautologically implies the given sentence. If there is
such a row, then that set does not tautologically imply the given sentence.

Suppose that we are wondering whether this set of sentences: {P → ~Q, R ↔ P∧Q, Q ∨ R} tautologically
implies the sentence Q ∧ R. Here is a truth table to test this:

P Q R P → ~Q R ↔ P∧Q Q ∨ R Q ∧ R
T T T F T T T
T T F F F T F
T F T T T T F
T F F T T F F
F T T T F T T
F T F T T T F
F F T T F T F
F F F T T F F

There are in fact two rows (the third and the sixth) in which the sentences in the set are all true and the
given sentence is false. So they do not tautologically imply 'Q ∧ R'.

Using the same technique, we can show that this set of sentences: {P → ~Q, R ↔ P∧Q, Q ∨ R} does
tautologically imply the sentence P ↔ R. The truth table is:

P Q R P → ~Q R ↔ P∧Q Q ∨ R P ↔ R
T T T F T T T
T T F F F T F
T F T T T T T
T F F T T F F
F T T T F T F
F T F T T T T
F F T T F T F
F F F T T F T

Here, there is no row in which the sentences in the set are all true and 'P ↔ R' is false. So that set of
premises does tautologically imply that sentence.

If there is a derivation using the rules and techniques of Chapters 1 and 2 showing that an argument is
valid, then the premises of the argument do indeed tautologically imply the conclusion. And vice versa: if
some premises tautologically imply a given conclusion, then there is a derivation to show that the
argument is valid.

So we have two ways to show that some sentences tautologically imply another: this can be done with a
truth table or with a derivation. We have one way to show that some set of sentences does not
tautologically imply another: find a way to assign truth values to the simple parts so that all the sentences
in the set are all true and the given sentence false.

CHAPTER 2 SECTION 11

Copyrighted material Chapter 2 -- 39

EXERCISES

For each of the following arguments, either show that the premises tautologically imply the conclusion, or
show that the premises do not tautologically imply the conclusion.

a. U∧V → X
 ~V → U
 X∨V → U
 ∴ V → ~U

b. (X→Y) → Z
 ~Z
 ∴ ~Y

c. ~(P ↔ Q)
 R ∨ P
 ~Q → R
 ∴ R

d. S ∨ T
 W ∨ S
 ~T ∨ ~S
 ∴ ~S

e. W → U
 ~W → V
 ∴ U ∨ V

f. P ↔ ~Q
 Q → R∨P
 R → ~Q ∨ ~P
 ∴ Q ∨ R

g. P ∨ (Q∧S)
 S ∨ Q
 S ∨ ~P
 ∴ S

h. P ∧ (Q∨S)
 S ∨ Q
 S ∨ P
 ∴ S

CHAPTER 2 SUMMARIES

Copyrighted material Chapter 2 -- 40

BASIC AND DERIVED RULES FROM CHAPTERS 1 AND 2

BASIC RULES OF CHAPTER 1

 Repetition: □
 ∴ □

 Modus Ponens: □→○
 □
 ∴ ○

 Modus Tollens: □→○
 ~○
 ∴ ~□

 Double negation: □ or ~~□
 ∴ ~~□ ∴ □

BASIC RULES OF CHAPTER 2

Conjunction rules:

 Rule s (simplification) Rule adj (adjunction)

 □ ∧ ○ or □ ∧ ○ □
 ∴ □ ∴ ○ ○
 ∴ □ ∧ ○
Disjunction rules:

 Rule add (addition) Rule mtp (modus tollendo ponens)

 □ or □ □ ∨ ○ or □ ∨ ○
 ∴ □ ∨ ○ ∴ ○ ∨ □ ~○ ~□
 ∴ □ ∴ ○
Biconditional rules:

 Rule bc (biconditional-to-conditional) Rule cb (conditionals-to-biconditional)

 □ ↔ ○ or □ ↔ ○ □ → ○
 ∴ □ → ○ ∴ ○ → □ ○ → □
 ∴ □ ↔ ○

CHAPTER 2 SUMMARIES

Copyrighted material Chapter 2 -- 41

THEOREMS USED AS RULES

A theorem of conditional form:

 ∴ □∧○ → △

justifies a rule of this form:

 □
 ○
 ∴ △

A theorem of biconditional form:

 ∴ □ ↔ ○

justifies whatever both conditionals justify.

DERIVED RULES (May be used if the theorems on which they are based have been
derived.)

Rule nc <based on T40>

 ~(□→○) □ ∧ ~○
 ∴ □ ∧ ~○ ∴ ~(□→○)

Rule cdj <based on T45, T46>

 □ → ○ ~□ ∨ ○ ~□ → ○ □ ∨ ○
 ∴ ~□ ∨ ○ ∴ □ → ○ ∴ □ ∨ ○ ∴ ~□ → ○

Rule sc <based on T33, T49>

 □ ∨ ○ □ → △
 □ → △ ~□ → △
 ○ → △ ∴ △
 ∴ △

Rule dm <based on T63-66>

 □ ∧ ○ □ ∨ ○ ~(□∧○) ~(□∨○)
 ∴ ~(~□∨~○) ∴ ~(~□∧~○) ∴ ~□ ∨ ~○ ∴ ~□ ∧ ~○

 ~(~□∨~○) ~(~□∧~○) ~□ ∨ ~○ ~□ ∧ ~○
 ∴ □ ∧ ○ ∴ □ ∨ ○ ∴ ~(□∧○) ∴ ~(□∨○)

Rule nb <based on T90>

 ~(□↔○) □ ↔ ~○
 ∴ □ ↔ ~○ ∴ ~(□↔○)

CHAPTER 2 SUMMARIES

Copyrighted material Chapter 2 -- 42

UNABBREVIATED DERIVATIONS
A derivation from a set of sentences P consists of a sequence of lines that is built up in order, step by
step, where each step is in accordance with these provisions:

• Show line: A show line consists of the word "Show" followed by a symbolic sentence. A show
line may be introduced at any step. Show lines are not given a justification.

• Premise: At any step, any symbolic sentence from the set P may be introduced, justified with the
notation "pr".

• Theorem: At any step, an instance of a previously proved theorem may be entered with the name
of the theorem given as justification. (e.g. "T32")

• Rule: At any step, a line may be introduced if it follows by a rule from sentences on previous
available lines; it is justified by citing the numbers of those previous lines and the name of the rule.
 This includes the following basic rules:

 r mp mt dn s
 adj add mtp bc cb

It also includes rules based on previously derived theorems, where the name of a rule based on a
theorem is "R" followed by the name of the theorem; e.g. "RT32". If the appropriate enabling
theorems have been derived, these rules are also available for use:

 nc cdj sc dm nb
• Direct derivation: When a line (which is not a show line) is introduced whose sentence is the

same as the sentence on the closest previous uncancelled show line, one may, as the next step,
write "dd" following the justification for that line, draw a line through the word "Show", and draw a
box around all the lines below the show line, including the current line.

• Assumption for conditional derivation: When a show line with a conditional sentence is
introduced, as the next step one may introduce an immediately following line with the antecedent
of the conditional on it; the justification is "ass cd".

• Conditional derivation: When a line (which is not a show line) is introduced whose sentence is
the same as the consequent of the conditional sentence on the closest previous uncancelled show
line, one may, as the next step, write "cd" at the end of that line, draw a line through the word
"Show", and draw a box around all the lines below the show line, including the current line.

• Assumption for indirect derivation: When a show line is introduced, as the next step one may
introduce an immediately following line with the [un]negation of the sentence on the show line; the
justification is "ass id".

• Indirect derivation: When a sentence is introduced on a line which is not a show line, if there is a
previous available line containing the [un]negation of that sentence, and if there is no uncancelled
show line between the two sentences, as the next step you may write the line number of the first
sentence followed by "id" at the end of the line with the second sentence. Then you cancel the
closest previous "show", and box all sentences below that show line, including the current line.

Except for steps that involve boxing and canceling, every step introduces a line. When writing out a
derivation, every line that is introduced is written directly below previously introduced lines.

Optional variant: When boxing and canceling with direct or conditional derivation, the "dd" or "cd"
justification may be written on a later line which contains no sentence at all, and which is followed by the
number of the line that satisfies the conditions for direct or conditional derivation. With indirect derivation,
the "id" justification may be written on a later line which contains no sentence at all, and which is followed
by the numbers of the two lines containing contradictory sentences. In all cases, the lines cited must be
available from the later line.

CHAPTER 2 SUMMARIES

Copyrighted material Chapter 2 -- 43

STRATEGY HINTS

Try to reason out the argument for yourself.

Begin with a sketch of an outline of a derivation, and then fill in the details.

Write down obvious consequences.

When no other strategy is obvious, try indirect derivation.

To derive: Try this:
Conjunction
 □ ∧ ○

Derive each conjunct, and adjoin them

Disjunction
 □ ∨ ○

Derive either disjunct and use add. (Often this is not possible.)
Assume '~(□ ∨ ○)' for id and immediately use dm.
Derive '~□ → ○' and use cdj

 Conditional
 □ → ○

Use cd

Biconditional
 □ ↔ ○

Derive both conditionals and use cb.

Negation of
conjunction
 ~(□ ∧ ○)

Use id.

Negation of
disjunction
~(□ ∨ ○)

Derive '~□ ∧ ~○' and use dm.
Perhaps assume '□ ∨ ○' for id and try to derive both '□ → P∧~P' and '○→P∧~P'.
Then use sc (applied to the assumed '□ ∨ ○' and the conditionals) to derive 'P∧~P'.

Negation of
conditional
 ~(□ → ○)

Use id.

Negation of
biconditional
 ~(□ ↔ ○)

Derive '□ ↔ ~○' and use nb.

If you have this
available:

Try this:

Conjunction
 □ ∧ ○

Simplify and use the conjuncts singly.

Disjunction
 □ ∨ ○

Try to derive the negation of one of the disjuncts, and use mtp..
Derive the conditionals '□ → △' and '○ → △', where '△' is something you want to
derive. Then use sc with the disjunction and two conditionals.

Conditional
 □ → ○

Try to derive the antecedent to set up mp, or derive the negation of the consequent,
to set up mt.

Biconditional
 □ ↔ ○

Infer both conditionals and use them with mp, mt, and so on.

Negation of Use dm to turn this into '~□ ∨ ~○', and then try to derive either '□' or '○' to use mtp.

CHAPTER 2 SUMMARIES

Copyrighted material Chapter 2 -- 44

conjunction
 ~(□ ∧ ○)
Negation of
disjunction
~(□ ∨ ○)

Use dm to turn this into '~□ ∧ ~○'; then simplify and use the conjuncts singly.

Negation of
conditional
 ~(□ → ○)

Use nc to derive '□ ∧ ~○', then simplify and use the conjuncts singly.

Negation of
biconditional
 ~(□ ↔ ○)

Use nb to turn this into '□ ↔ ~○', and use bc to get the corresponding conditionals.

ALL THEOREMS FROM CHAPTERS 1 AND 2

T1 P→P

T2 Q → (P→Q)
T3 P → ((P→Q) → Q)

T4 (P→Q) → ((Q→R) → (P→R)) Syllogism

T5 (Q→R) → ((P→Q) → (P→R)) Syllogism

T6 (P → (Q→R)) → ((P→Q) → (P→R)) Distribution of → over →

T7 ((P→Q) → (P→R)) → (P→(Q → R)) Distribution of → over →

T8 (P→ (Q→R)) → (Q → (P→R)) Commutation

T9 (P → (P→Q)) → (P→Q)

T10 ((P→Q) → Q) → ((Q→P) → P)

T11 ~~P → P Double negation

T12 P → ~~P Double negation

T13 (P→Q) → (~Q → ~P) Transposition

T14 (P → ~Q) → (Q → ~P) Transposition

T15 (~P → Q) → (~Q → P) Transposition

T16 (~P → ~Q) → (Q → P) Transposition

T17 P → (~P→Q)

T18 ~P → (P→Q)

T19 (~P→P) → P Reductio ad absurdum

T20 (P→~P) → ~P Reductio ad absurdum

T21 ~(P→Q) → P

T22 ~(P→Q) → ~Q

T23 ((P→Q) → P) → P Peirce's law

T24 P∧Q ↔ Q∧P "commutative law for conjunction"

CHAPTER 2 SUMMARIES

Copyrighted material Chapter 2 -- 45

T25 P∧ (Q∧R) ↔ (P∧Q)∧ R "associative law for conjunction"

T26 (P→Q) ∧(Q→R) → (P→ R) "hypothetical syllogism"

 T27 (P∧Q → R) ↔ (P → (Q→R)) "exportation"

T28 (P∧Q → R) ↔ (P∧~R → ~Q)
T29 (P→ Q∧R) ↔ (P→Q) ∧(P→R) "distribution of → over ∧"

T30 (P→Q) → (R∧P → R∧Q)
T31 (P→Q) → (P∧R → Q∧R)
T32 (P→R) ∧(Q→S) → (P∧Q → R∧S) "Leibniz's praeclarum theorema"

T33 (P→Q) ∧(~P→Q) → Q "separation of cases; constructive dilemma"

T34 (P→Q) ∧(P→~Q) → ~P "reductio ad absurdum"

T35 (~P→R) ∧(Q→R) ↔ ((P→Q) → R)
T36 ~(P ∧ ~P) "non-contradiction"

T37 (P→Q) ↔ ~(P ∧ ~Q)
T38 P∧Q ↔ ~(P → ~Q)
T39 ~(P∧Q) ↔ (P → ~Q)
T40 ~(P → Q) ↔ P∧~Q "negation of conditional"

T41 P ↔ P∧P "idempotence for ∧"

T42 P∧~Q → ~(P→Q) "negation of conditional"

T43 ~P → ~(P∧Q)
T44 ~Q → ~(P∧Q)

T45 P∨Q ↔ (~P→Q)
T46 (P→Q) ↔ ~P ∨ Q "definition of → in terms of ∨"

T47 P ↔ P∨P "idempotence for ∨"

T48 (P∨Q) ∧(P→R) ∧(Q→S) → R∨S
T49 (P∨Q) ∧(P→R) ∧(Q→R) → R "separation of cases"

T50 (P→R) ∧(Q→R) ↔ (P∨Q→R)

T51 (P∨Q) ∧(P→R) ∧(~P∧Q→R) → R
T52 (P→R) ∧(~P∧Q→R) ↔ (P∨Q→R)
T53 P∨Q ↔ Q∨P "commutative law for ∨"

T54 P ∨ (Q∨R) ↔ (P∨QR) ∨ R "associative law for ∨"

T55 (P → Q∨R) ↔ (P→Q) ∨ (P→R) "distribution of → over ∨"

T56 (P→Q) → (R∨P → R∨Q)
T57 (P→Q) → (P∨R → Q∨R)
T58 (P→Q) ∨ (Q→R)
T59 P ∨ ~P "excluded middle"

T60 (P→R) ∨ (Q→R) ↔ (P∧Q → R)

CHAPTER 2 SUMMARIES

Copyrighted material Chapter 2 -- 46

T61 P ∧ (Q∨R) ↔ (P∧Q) ∨ (P∧R) "distribution"

T62 P ∨ (Q∧R) ↔ (P∨Q) ∧(P∨R) "distribution"
T63 P ∧ Q ↔ ~(~P∨~Q) "de morgans"

T64 P ∨ Q ↔ ~(~P∧~Q) "de morgans"

T65 ~(P∧Q) ↔ ~P ∨ ~Q "de morgans"

T66 ~(P∨Q) ↔ ~P ∧ ~Q "de morgans"

T67 ~P∧~Q → ~(P∨Q)
T68 P ↔ (P∧Q) ∨ (P∧~Q)
T69 P ↔ (P∨Q) ∧(P∨~Q)
T70 Q → (P∧Q ↔ P)
T71 ~Q → (P∨Q ↔ P)
T72 (P→Q) ↔ (P∧Q ↔ P)
T73 (P→Q) ↔ (P∨Q ↔ Q)
T74 (P↔Q)∧ P → Q
T75 (P↔Q)∧ Q → P
T76 (P↔Q)∧ ~P → ~Q
T77 (P↔Q)∧ ~Q → ~P
T78 (P → (Q↔R)) ↔ ((P→Q) ↔ (P→R))
T79 (P → (Q↔R)) ↔ (P∧Q ↔ P∧R)
T80 (P↔Q) ∨ (P↔~Q)
T81 (P↔Q) ↔ (P→Q)∧ (Q→P)
T82 (P↔Q) ↔ ~((P→Q) → ~(Q→P))
T83 (P↔Q) ↔ (P∧Q) ∨ (~P∧~Q)
T84 P∧Q → (P↔Q)
T86 ((P↔Q) → R) ↔ (P∧Q → R)∧ (~P∧~Q → R)
T87 ~(P↔Q) ↔ (P∧~Q)∨(~P∧~Q)
T88 P∧~Q → ~(P↔Q)
T89 ~P∧Q → ~(P↔Q)
T90 ~(P↔Q) ↔ (P↔~Q)
T91 P ↔ P
T92 (P↔Q) ↔ (Q↔P)
T93 (P↔Q) ∧(Q↔R) → (P↔R)
T94 (P ↔ (Q↔R)) ↔ ((P↔Q) ↔ R)
T95 (P→Q) ↔ ((P↔R) ↔ (Q↔R))
T96 (P↔Q) ↔ (~P↔~Q)

CHAPTER 2 SUMMARIES

Copyrighted material Chapter 2 -- 47

T97 (P↔R)∧ (Q↔S) → ((P→Q) ↔ (R→S))
T98 (P↔R)∧ (Q↔S) → (P∧Q ↔ R∧S)
T99 (P↔R)∧ (Q↔S) → (P∨R ↔ Q∨S)
T100 (P↔R)∧ (Q↔S) → ((P↔Q) ↔ (R↔S))
T101 (Q↔S) → ((P→Q) ↔ (P→S)) ∧((Q→P) ↔ (S→P))
T102 (Q↔S) → (P∧Q ↔ P∧S)
T103 (Q↔S) → (P∨Q ↔ P∨S)
T104 (Q↔S) → ((P↔Q) ↔ (P↔S))
T105 P∧ (Q↔R) → (P∧Q ↔ R)
T106 (P → (Q→R)) ↔ ((P→Q) → (P→R))
T107 (P →→R)) ↔ (Q → (P→R))
T108 (P →(P→Q)) ↔(P→Q)
T109 ((P→Q) → Q) ↔ ((Q→P) → P)
T110 P ↔ ~~P
T111 (P→Q) ↔ (~Q→~P)
T112 (P→~Q) ↔ (Q→~P)
T113 (~P→Q) ↔ (~Q→P)
T114 (~P→P) ↔ P
T115 (P→~P) ↔ ~P
T116 (P∧Q) ∨ (R∧S) ↔ (P∨R) ∧(P∨S) ∧(Q∨R) ∧(Q∨S)
T117 (P∨Q) ∧(R∨S) ↔ (P∧R) ∨ (P∧S) ∨ (Q∧R) ∨ (Q∧S)
T118 (P∨Q) ∧(R∨S) ↔ (~P∧~R) ∨ (~P∧S) ∨ (Q∧~R) ∨ (Q∧S)
T119 (P∨~P) ∧Q ↔ Q
T120 (P∧~P) ∨ Q ↔ Q
T121 P ∨ (~P∧Q) ↔ P∨Q
T122 P ∧ (~P∨Q) ↔ P∧Q
T123 P ↔ P ∨ (P∧Q)
T124 P ↔ P ∧ (P∨Q)
T125 (P→ Q∧R) → (P∧Q ↔ P∧R)

