
 CHAPTER 3 SECTION 1

 Chapter Three -- 1

Chapter Three
Name letters, Predicates, Variables and Quantifiers

1 NAME LETTERS AND PREDICATES

In chapters 1 and 2 we studied logical relations that depend only on the sentential connectives: '~', '→', '∧',
'∨', '↔'. The atomic sentences -- those that contain no connectives -- were symbolized by sentential
letters, and we paid no attention to any internal structure that they might have. It is now time to study that
structure. The Predicate Calculus is a system of logic that studies the ways in which sentences are
constructed out of name letters, predicates, variables, and quantifiers, as well as connectives. We have
already studied connectives; in this section we introduce name letters, predicates, variables, and
quantifiers.

In our logical symbolism, name letters are written as small letters: a, b, c, d, e, f, g, h. Any small letter
between 'a' and 'h' can be used as a name letter. Name letters in the logical symbolism correspond to
names of English:

Carlos, Agatha, Dr. Samuelson, Ms. Bernstein, Madame Curie, David Rockefeller, San
Diego, Germany, UCLA, General Electric, Microsoft, Google, Macy's, The Los Angeles
Times, I-405, Memorial Day, the FBI, ...

Any one of these may be symbolized by means of a name letter:

h Henry
c California
g General Electric

The simplest way to make a sentence containing a name letter is to combine it with a one-place
predicate. One-place predicates appear in our logical symbolism as the capital letters from A to O.
One-place predicates correspond roughly to grammatical predicates in English; in the following examples,
the underlined phrases would be symbolized as one-place predicates:

 Agatha is clever.
 Henry is a giraffe.
 Ferdy dances well.
 Georgia is a state
 Ann will run for re-election.

(The parts that are not underlined are symbolized with name letters.)

Whereas English proper names are usually capitalized, the logical name letters that represent them are
not, and whereas English predicates are typically not capitalized, the logical predicates that represent
them are capitalized. There is nothing "logical" about this reverse convention; it is an historical accident,
but it has now become part of the tradition of symbolic logic Further, in the usual formulations of the
predicate calculus the predicate comes before the name letter, instead of after it as in English. This, too,
is an historical accident. So the sentences given above can be symbolized as follows:

 Agatha is clever. Ca
 Henry is a giraffe. Gh
 Ferdy dances well. Df
 Georgia is a state. Ag
 Ann will run for re-election. Ea

A one-place ("monadic") predicate is any capital letter between 'A' and 'O'.
A name letter is any small letter from 'a' to 'h'.
An atomic sentence may be formed by writing a one-place predicate followed by a name
letter.

 CHAPTER 3 SECTION 1

 Chapter Three -- 2

EXERCISES

1. Symbolize each of the following sentences:

 a. Fred is an orangutan.
 b. Gertrude is an orangutan but Fred isn't.
 c. Tony Blair will speak first.
 d. Gary lost weight recently; he is happy.
 e. Felix cleaned and polished.
 f. Darlene or Abe will bat clean-up.

We assume that a one-place predicate is true of certain things, and that a name letter stands for a unique
thing. A sentence consisting of a one-place predicate together with a name letter is true if and only if the
predicate is true of the thing that the name letter stands for. Thus, taking the examples listed above, we
assume that 'C' is true of all and only clever things, that 'a' stands for Agatha (presumably a person or
animal), and then:

 Ca

is true if and only if Agatha is one of the clever things that the predicate is true of. Similarly, if `G' is true of
giraffes, then `Gh' is true if Henry is one of the giraffes. If `E' is true of the things that will run for
re-election, and if 'a' stands for Ann, then `Ea' is true if and only if Ann will run for reelection.

Predicates are generally true of several specific things, but a predicate might be true of only one thing ('is
a moon of the earth') or might not be true of anything at all. If there are in fact no dragons, the sentence:

Df Fred is a dragon

contains a predicate 'D' that is true of nothing at all. This means that the sentence `Df' will be false, no
matter who or what `Fred' stands for.

In this chapter we assume that each name letters in our logical symbolism stands for a unique thing. This
assumption is an idealization, for it is not true that the words of English that we are representing by name
letters always succeed in naming something. If there is no such person as Paul Bunyan, then `Paul
Bunyan' is a "name" that names nothing at all. In some systems of logic it is possible to use name letters
which do not stand for anything; these systems of logic are called "free logics". (They are called "free"
because they are "free of" the assumption that the name letters they contain actually stand for things.)
Free logics are a bit more complicated than standard logic. (Studies of free logic assume that the reader
is already acquainted with the standard logic taught here.) In this text we assume that any name letter
that we use stands for something.

EXERCISES

2. Symbolize each of the following, assuming:

 `D' is true of doctors
 'L' is true of people who are in love
 'h' stands for Hans
 'a' stands for Amanda

 a. Hans is a doctor but Amanda isn't.
 b. Hans, who is a doctor, is in love
 c. Hans is in love but Amanda isn't
 d. Neither Hans nor Amanda is in love
 f. Hans and Amanda are both doctors.

 CHAPTER 3 SECTION 1

 Chapter Three -- 3

3. Symbolize each of the following, using:

 'L' for things that live in Brea
 'D' for things that drive to school

 a. Eileen and Cosi both live in Brea.
 b. Eileen drives to school, and so does Hank.
 c. If Hank lives in Brea then he drives to school; otherwise he doesn't drive to school.
 d. If David and Hank both live in Brea then David drives to school but Hank doesn't.
 e. Neither Hank nor Eileen live in Brea, yet each of them drives to school.

2 QUANTIFIERS, VARIABLES, AND FORMULAS

So far, we have no means at all in our symbolism to express generalities. We can say that Pedro is a
doctor, and we can say that Pedro is wealthy, but we cannot say that everyone is a doctor, or that every
doctor is wealthy. Nor can we deny that everyone is a doctor, or say that some doctor isn't wealthy. We
cannot even express these claims. In order to express generalities we will introduce quantifiers and
variables.

 Variables: Any small letter from 'i' to 'z' is a variable. Small letters between 'I' and 'z'
 with numerical subscripts are also variables (though they will not be used in this
 chapter).

 The universal quantifier is '∀'.
 The existential quantifier is '∃'.

 A quantifier phrase is a quantifier followed by a variable:

∀x ∀z ∀s ∃x ∃z ∃s

Here is how we use quantifiers. Suppose that we wish to say -- as some philosophers have said -- that
everything in the universe is either mental or physical. Suppose that `M' is the one-place predicate `is
mental', and `H' is the one-place predicate `is physical'. Then we symbolize the claim that everything is
either mental or physical as follows:

 ∀x(Mx ∨ Hx).

The initial `∀x' is a universal quantifier phrase. This is followed by something, `(Mx ∨ Hx)', which we will
call a symbolic formula. A formula is something like a symbolic sentence, except that in addition to a
name letter following each predicate we may instead have a variable, such as `x' above. The displayed
formula says that everything satisfies a certain condition. The universal quantifier phrase is responsible
for the "everything" part, and the combination of variables and predicates tells us what the condition is. In
the case in point, the condition is that it is either mental or physical:

 ∀x (Mx ∨ Hx)

Everything it is either mental or physical

 is such that

The existential quantifier can appear in a formula in the same place that a universal quantifier may appear:

 ∃x (Mx ∨ Hx)

Something it is either mental or physical

 is such that

 CHAPTER 3 SECTION 2

Copyrighted material Chapter Three -- 4

In order to construct sentences in our new extended notation, we begin by defining what a symbolic
formula is. Intuitively, a symbolic formula is like a sentence, except that it may contain variables in places
where name letters otherwise would appear. We use the word 'term' to cover both name letters and
variables.

 Terms: Any name letter or variable is a term.

So 'a' and 'x' are both terms. A formula is built up in steps, as follows:

 Sentence letters: Any sentence letter is an atomic formula.

 Atomic formulas: A one-place predicate followed by a term is an atomic formula.

Thus, if F is a one-place predicate and 'a' is a name letter, then 'Fa' is an atomic
formula, and
if 'F' is a one-place predicate and 'x' is a variable then 'Fx' is an atomic formula.

Both 'Henry is a giraffe' and 'x is a giraffe' are symbolized as atomic formulas:

 Gh, Gx

 Molecular formulas: If □ and ○ are formulas, then the following are molecular
formulas:

 ~□ □∧○ □∨○ □→○ □↔○

Here are some molecular formulas:

 ~Gh ~Gx (Gx ∧ Fa) (Gx ∨ Jc) (Gh → Jy) (~Fa ↔ Ga) → Hx

We can also make formulas out of other formulas by "generalizing" them with quantifiers:

Quantified formulas: If □ is a formula, and 'x' is a variable, then these are quantified
formulas:
 ∀x□ ∃x□

Examples of quantified formulas are:

 ∀xGx ∃xFx ∀y(Gy→Fy) ∃w~(Gw ∧ ~Fb) ∀v(~Jx ↔ Fv)

Once a quantified formula is constructed, it may be used as input to any of these provisions. So, given
that the examples above are formulas, we can make new formulas by combining them with connectives:

 (∀xGx ∧ ∃xFx) (∃xFx ∨ ∀y(Gy→Fy)) ∀y(Gy→Fy) (P ∧ ∃xFx)

We may informally omit parentheses exactly as we did in the last chapter, to produce informal notation:

 ∀xGx ∧ ∃xFx ∃xFx ∨ ∀y(Gy→Fy)

(Note that '∀yGy→Fy', is a conditional; it is not equivalent to '∀y(Gy→Fy)', which is a universal
generalization of a conditional.)

Likewise, we can add a quantifier to a formula that already has one or several quantifiers within it:

 ∀x(Gx → ∃yFy) ∀x~∃y(Gx ∨ ~Fy) ∀x∀y∀z(Gx → Fz)

 CHAPTER 3 SECTION 2

Copyrighted material Chapter Three -- 5

 A formula is anything that can be constructed by means of the above provisions for
atomic formulas, molecular formulas, and quantified formulas.
Nothing else is a formula.

Every formula is either atomic, or it has a main connective or a quantifier with scope over the whole
formula. The main connective or quantifier in a formula is the last connective or quantifier that was added
in constructing the formula. Formulas may be parsed as in chapters 1 or 2. Some examples are:

 ∀x(Gx → ∃yFy) ∀x~∃y(Gx ∨ ~Fy)
 | |
 (Gx → ∃yFy) ~∃y(Gx ∨ ~Fy)
 2 |
 Gx ∃yFy ∃y(Gx ∨ ~Fy)
 | |
 Fy (Gx ∨ ~Fy)
 2
 Gx ~Fy
 |
 Fy

EXERCISES

1. For each of the following, say whether it is a formula in official notation, or in informal notation, or not a
formula at all. If it is a formula, parse it.

 a. ~∀x(Fx → (Gx ∧ Hx))
 b. ∃x~~Gx → Hx ∨ ∃yGy
 c. ~(Gx ↔ ~Hx)
 d. ∀xGx ∧ ∃Hx
 e. Fa → (Gb ↔ Hc)
 f. ∀x(Gx ↔ x ∨ Ha)
 g. ∀x(Gx ↔ Hx) → Ha ∧ ∃zKz

 CHAPTER 3 SECTION 3

Copyrighted material Chapter Three -- 6

3 SCOPE AND BINDING

In the following we will need to distinguish a symbol from an occurrence of that symbol. For example, the
formula:

 ∀xFx

contains one variable, the variable 'x', which occurs twice in the formula. It has one occurrence
immediately following the quantifier, and one occurrence immediately following the predicate 'F'. It will be
important to be able to say when an occurrence of a quantifier binds an occurrence of a variable. This
can be given a precise explanation in terms of the scope of an occurrence of a quantifier. The scope of
an occurrence of a quantifier includes itself and its variable along with the formula to which it was prefixed
when constructing the whole formula. Here are some occurrences of quantifiers and their scopes,
indicated by underlining. (The line immediately under a quantifier occurrence indicates its scope.)

 ∀x Fx

 ∀x(Fx → Gx)

 ∃xFx ∧ ∃y(Gy ∧ Hy)

 ∃x(Fx ∧ ∀yGy)

 ∃x(Fx ∧ ∃y(∃zGz ∧ Hy))

Using the notion of the scope of a quantifier, we can say when a quantifier occurrence binds an
occurrence of a variable in a formula:

A quantifier occurrence binds an occurrence of a variable if
 the variable occurrence is within the scope of the quantifier occurrence

the variable occurrence is the same as the one that accompanies the quantifier
the variable occurrence is not already bound by another quantifier occurrence within
the scope of the first quantifier occurrence

(Notice that a variable occurrence that is part of a quantifier phrase is automatically bound by its
quantifier.)

The arrows here indicate which variables are bound by the quantifier:

 ∀x(Fx → Gx)

The initial quantifier binds both occurrences of 'x' because (1) they are within its scope, (2) they are the
same letter as the one in the quantifier itself, and (3) they are not already bound by another quantifier in
the formula. These examples are similar:

 ∃xFx ∧ ∃y(Gy ∧ Hy)

 ∃x(Fx ∧ ∀yGy)

 ∃x(Fx ∧ ∃y (∃zGz ∧ Hy))

 CHAPTER 3 SECTION 3

Copyrighted material Chapter Three -- 7

 ∃x(Fx ∧ ∃y (∃zGz ∧ Hy ∧ Hx))

The following example illustrates a case in which an occurrence of 'x' (the last one) is not bound by the
initial quantifier'∃x′, even though it is within its scope. This is because there is another quantifier inside
that already binds that occurrence of 'x':

 ∃x(Fx ∧ ∃x (∃zGz ∧ Hx))

Using the notion of a quantifier binding an occurrence of a variable, we can define what a sentence is:

A sentence is any formula in which every occurrence of a variable in the formula is
bound by an occurrence of a quantifier in the formula.

A variable occurrence that is not bound is called "free". So a sentence can also be defined as a formula
that contains no free occurrences of variables.

All of the examples given above are sentences. The following formulas are not sentences because certain
occurrences of variables in them are not bound any of their quantifiers:

 ∀x(Fy → Gx) no quantifier contains 'y'

 ∃xFx ∧ ∃y(Gx ∧ Hy) the scope of the initial quantifier does not include the second 'x'

 ∃x(Fx ∧ ∃y (∃zGz ∧ Hz)) the scope of the quantifier with 'z' does not extend far enough

 ∃x(Fx ∧ ∃x(∃zGz ∧ Hy)) no quantifier contains 'y'

EXERCISES

1. For each of the following, say whether it is a sentence, a formula that is not a sentence, or not a
formula at all. (Include sentences and formulas in informal notation as sentences and formulas.) If it is a
sentence or formula, indicate which quantifiers bind which variables.

 a. ∃x(Fx ∧ ∀y(Gy ∨ Hx))
 b. ∃y(Hy ∧ ∃~zHz)
 c. ∃z~(Hz ∧ Gx ∧ ∃xIx)
 d. ~(~Gx → ∀y(Jx ∧ Ky ↔ Lx))
 e. ∃xGx ↔ ∃y(Gy ∧ Hx)
 f. ∀x(Gx → ∀y(Hy → ∀z(Iz → Hx ∧ Gz)))
 g. ∀x∃y(Hx ↔ ~Gy)
 h. ∀xy(Gx ∧ Hy → Kx)
 i. ∀x(Gx ∧ ∃y → Hx ∧ Jy)
 j. ∀x∃y∀z(Gx ↔ ∃w(Hw ∧ ~Hx ∧ Gy))

 CHAPTER 3 SECTION 4

Copyrighted material Chapter Three -- 8

4 MEANINGS OF THE QUANTIFIERS

What do quantifiers mean? This can be answered indirectly by giving a way to read symbolic formulas in
English. We already know how to read the parts of formulas without quantifiers or variables; we have:

 Gh Henry is a giraffe
 Ea Ann with run for reelection
 Gh ∧ Ea Henry is a giraffe and Ann will run for reelection.
 Gh → Ea If Henry is a giraffe then Ann will run for reelection.

We can read a quantified formula by adding this:

Read any universal quantifier as "everything is such that", while reading any variable that it
binds as a pronoun which has the 'everything' as its antecedent.
Read any existential quantifier as "something is such that" while reading any variable that it
binds as a pronoun which has the 'something' as its antecedent.

Here are some examples:

 ∀xGx everything is such that it is a giraffe
 ∃x(Gx ∧ Ex) something is such that it is a giraffe and it will run for reelection
 ∀x(Gx → Ex) everything is such that if it is a giraffe then it will run for reelection

These readings are stilted, and sometimes cumbersome. But they are accurate paraphrases of the
symbolic notation. Often there are more natural ways to word an English sentence. For example, these
are all equivalent:

 ∃x(Gx ∧ Ex)
 something is such that it is a giraffe and it will run for reelection
 something is a giraffe which will run for reelection
 some giraffe will run for reelection

Likewise, these are all equivalent:

 ∀x(Gx → Ex)
 everything is such that if it is a giraffe then it will run for reelection
 everything, if it is a giraffe, will run for reelection
 every giraffe will run for reelection

As in the case of connectives, we need to distinguish carefully between the official definition of the
quantifiers and the question of how best to read them in English. The official definition of the quantifiers
has to do with the truth-values of the sentences that are produced using them:

Definitions of the quantifiers

To tell whether or not a sentence of the form ∀x(...x...x...) is true:

Remove the initial universal quantifier. Pretend that the variable it was binding is a
name letter. If you now have a sentence that is true no matter what the pretend
constant stands for, then the original sentence is true; otherwise it is false.

To tell whether or not a sentence of the form ∃x(...x...x...) is true:

Remove the initial existential quantifier. Pretend that the variable it was binding is a
name letter. If there is something that the pretend constant could stand for such
that the sentence you now have is true, then the original sentence is true; otherwise
it is false.

 CHAPTER 3 SECTION 4

Copyrighted material Chapter Three -- 9

To apply this to the example 'Everything is either mental or physical':

 Begin with the sentence:

 ∀x(Mx ∨ Hx).

 Erase the initial quantifier, yielding:

 Mx ∨ Hx.

 Now pretend that `x' is a name letter, and ask ourselves:

 Is `Mx ∨ Hx' true no matter what `x' stands for?

 If the answer is yes, then the original sentence `∀x(Mx ∨ Hx)' is true;
 otherwise `∀x(Mx ∨ Hx)' is false.

This test explains why we read `∀x(Mx ∨ Hx)' in English as `Everything is either mental or physical'. It is
because the test for the truth of `∀x(Mx ∨ Hx)' succeeds if everything is indeed either mental or physical,
and it fails if not everything is either mental or physical. To see that this is so, compare the meaning of the
English sentence with the official statement of the conditions under which the symbolized version is true:

Suppose that certain philosophers are right, and everything is either mental or physical. Then if
we treat `x' as a name letter, the phrase `Mx ∨ Hx' must be true no matter what `x' stands for.
Because it can only stand for something that is mental or physical (that's all there is), and if it
stands for something mental the first disjunct is satisfied, and if it stands for something physical
then the second disjunct is satisfied.

Suppose on the other hand that not everything is either mental or physical. (Suppose, as some
philosophers have argued, that the number 4 is neither a mental thing nor a physical thing.) Then
if we treat `x' as a name letter, we will not find that the phrase `Mx ∨ Hx' is true no matter what `x'
stands for. For if `x' stands for the number 4, neither disjunct will be satisfied.

These considerations do not settle the question of whether everything is either mental or physical. Instead
they show that there is an equivalence between the truth-value, in English, of the sentence `Everything is
either mental or physical', and the truth-value, according to our official account, of the predicate calculus
sentence `∀x(Mx ∨ Hx)'.

EXERCISES

1. Suppose that `A' stands for `is a sofa', `B' stands for `is well-built' and `C' stands for `is comfortable'.
For each of the following sentences, produce an accurate but "cumbersome" reading in English as well as
a natural idiomatic reading if possible.

 a. ∃x(Ax ∧ Bx) e. ∀y~Ay
 b. ∀x(Ax → Bx) f. ∀z(Az ∧ Bz → Cz)
 c. ∀x(Ax ∨ Bx) g. ∃xCx ∧ ∀yBy
 d. ∃x~Ax h. ∃x(Cx → ∀yBy)

2. Assume that all giraffes are friendly, and that some giraffes are clever and some aren't. What are the
truth-values of these sentences?

 a. ∀x(Gx → Fx) d. ∃y(Fy ∧ Cy)
 b. ∀x(Gx → Cx) e. ∃z(Gz ∧ Cz)
 c. ∃x(~Fx ∧ Gx) f. ∀x(Gx → ~Gx)

 CHAPTER 3 SECTION 5

Copyrighted material Chapter Three -- 10

5 SYMBOLIZING SENTENCES WITH QUANTIFIERS

5A CATEGORICAL SENTENCES
The ancient Greek philosopher Aristotle is generally credited with the invention of formal logic. He devised
a fairly complete and accurate study of the logical relations among sentences of a certain special sort.
These are called "categorical" sentences, and they include any sentence which has one of the following
forms (with Aristotle's titles):

Universal affirmative: Every A is B
Particular affirmative: Some A is B
Universal negative: No A is B
Particular negative: Some A is not B

These categorical sentences are only a few of the forms that can be represented in modern predicate
logic, but they are simple and basic, and their treatment provides a nice introduction to the symbolism.

A universal affirmative sentence of the form:

 Every A is B

is represented in the predicate calculus as:

 ∀x(Ax → Bx).

You can judge the adequacy of this for yourself by comparing the reading of the symbolic version with the
English form; that is, compare:

 Everything is such that if it is an A then it is B

with:
 Every A is B.

The question to ask for logical purposes is: Is there any possible situation in which these two sentences
differ in truth-value? If they agree in all logically possible situations, then the proposed symbolization is a
good one; otherwise not. Here is some reasoning that suggests the symbolization is a good one:

Suppose that in some possible situation every A is B. Then, in that situation everything
will be such that if it's an A then it is B. Suppose on the other hand that not every A is B.
Then there will be something that is an A but is not B. So it won't be true that everything
is such that if it's an A it is B.

Traditionally, the main reservation expressed about this symbolization concerns a possible situation in
which there are no A's at all. Suppose that a naturalist is uncertain about whether or not there are any
friendly elephants, but is willing to assert:

 Every friendly elephant is an herbivore.

Suppose that there are in fact no friendly elephants. Then is what the naturalist said true or false? If we
accept the proposed symbolization above, we will represent the naturalist as having said something true.
Let us see why this is so. The proposed symbolization is:

 ∀x(x is a friendly elephant → x is an herbivore),

that is:
 ∀x(Fx ∧ Ex → Hx).

If there are no friendly elephants, this sentence will be true, because, treating `x' as a name letter, the
following is true no matter what `x' stands for:

 Fx ∧ Ex → Hx.

 CHAPTER 3 SECTION 5

Copyrighted material Chapter Three -- 11

It is true because no matter what `x' stands for, the antecedent is false (because there are no friendly
elephants).

Is that a proper treatment of the English sentence that was asserted? The consensus on this matter
seems to be "sometimes yes, sometimes no." That is, sometimes when we say "Every A is B" we
presuppose or imply that there are some A's, and sometimes we are neutral on this. In this text we will
always take the weaker interpretation, supposing that "Every A is B" does not commit you to there being
any A's. It is true, not false, if there are no A's. This is just a convention (a widely adopted one) for our
convenience. (If you want a version of 'Every A is B' that does commit you to there being A's, just write:
'∃xAx ∧ ∀x(Ax → Bx)'.)

The particular affirmative form -- "Some A is B" -- is easy to symbolize; it gets represented as:

 ∃x(Ax ∧ Bx),

that is, "Something is such that it is both A and B."

Plural forms of categorical sentences are symbolized just like the singular forms:

 All A's are B Every A is B ∀x(Ax → Bx)
 Some A's are B Some A is B ∃x(Ax ∧ Bx)

This might seem wrong if you think that the use of the plural in English commits you to the view that there
is more than one A which is B. (The symbolized version has no such commitment.) The answer seems to
be that we sometimes use the plural to convey the thought that there is more than one A, but sometimes
we are neutral about this. In this text we will adopt the weaker interpretation, which makes "Some A's are
B" true whenever there is at least one A that is B.

The universal negative form is:

 No A is B

There are two equally natural ways to symbolize this. One way depends on noticing that "No A is B" is
equivalent to saying "Every A is not B," which can be symbolized as:

 ∀x(Ax → ~Bx).

The other way is to notice that "No A is B" is equivalent to denying that "At least one A is B," and
symbolizing the sentence as:

 ~∃x(Ax ∧ Bx).

Soon we will be able to prove that these two forms are logically equivalent.

There are two traps to beware of when symbolizing categorical sentences. They both involve trying to
make the symbolizations of "universal" and "particular" sentences look alike. Suppose that we want to
symbolize:

 Some dogs are brown.

It will not be correct to symbolize this as:

 ∃x(Dx → Bx),

that is:

 Something is such that if it's a dog then it's brown.

This would be wrong because in some possible situations the symbolized version would differ in
truth-value from the English version. Consider a possible situation which is just like the actual one except
that all dogs are black, white, or grey. The English sentence 'Some dogs are brown' would be false in that

 CHAPTER 3 SECTION 5

Copyrighted material Chapter Three -- 12

situation. But the symbolized version would be true in that situation. It would be true for the totally
irrelevant reason that not everything is a dog!!! Remember the official account of the existential quantifier;
the sentence:

 ∃x(Dx → Bx)

is true if there is something to let `x' stand for which makes this true:

 Dx → Bx.

But that's easy; just let `x' stand for some thing that is not a dog -- and then we have a conditional whose
antecedent is false. And such a conditional is true. The symbolized version is automatically true if there is
anything that isn't a dog, whereas the English sentence is not automatically true in such a situation. So
the symbolization is not a good one to use for that English sentence.

The other trap is to try to symbolize:

 Every A is B
as:
 ∀x(Ax ∧ Bx).

For example, you might try to symbolize:

 Every dog is a mammal

as:
 ∀x(Dx ∧ Mx).

It is easy to see that this cannot be a correct symbolization, for the English sentence is true, whereas the
symbolized version is false. The symbolized version says:

 Everything is such that it is a dog and it is a mammal,

that is:

 Everything is both a dog and a mammal.

But you are not both a dog and a mammal, so the symbolic sentence is false. So the symbolic sentence is
not a correct way to represent the English sentence we are trying to symbolize, `All dogs are mammals',
since the English sentence is true. The right way to translate the English sentence is the way discussed
above:
 ∀x(Dx → Mx).

EXERCISES

1. Symbolize these sentences.

 a. Every handsome elephant is friendly.
 b. No handsome elephant is friendly.
 c. Some elephants are not handsome.
 d. Some handsome elephants are friendly.
 e. Each friendly elephant is handsome.
 f. A handsome elephant is not friendly.
 g. No friendly elephant is handsome.

 CHAPTER 3 SECTION 5

Copyrighted material Chapter Three -- 13

5B COMPLEX CATEGORICAL FORMS

Many sentences are constructed out of categorical forms. An example is:

 Every brown dog is happy and well-fed

To symbolize this sentence, notice that the sentence in fact is a universal affirmative sentence; it just
happens to have a complex antecedent and a complex consequent. So begin by using the pattern for
universal affirmatives:

 ∀x(x is a brown dog → x is happy and well-fed)

Then complete the symbolization by filling in the details in the antecedent and consequent:

 ∀x(Bx∧Dx → Hx∧Fx)

(The combination Adjective + Noun, such as 'brown dog', gets symbolized as a conjunction. For the
cases under consideration in this text, that is always the way to symbolize a combination consisting of an
adjective modifying a noun.)

This example is similar:

 Some brown dog isn't either happy or lively.

Its overall form is that of a particular affirmative:

 ∃x(x is a brown dog ∧ x isn't either happy or lively)

Its symbolization is then got by filling in the details in the conjuncts:

 ∃x(Bx ∧ Dx ∧ ~(Hx ∨Lx))

Some other examples like this are:

 No dog is happy unless every dog is well-fed
 ∀x(x is a dog → ~x is happy) unless ∀x(x is a dog → x is well-fed)
 ∀x(Dx → ~Hx) ∨ ∀x(Dx → Fx)

 Each dog is happy unless it isn't well-fed
 ∀x(x is a dog → x is happy unless x is not well-fed)
 ∀x(Dx → Hx ∨ ~Fx)

As we have seen, categorical sentences can themselves be combined with connectives. Another example
is:

If every dog is well-fed, and every dog is an animal, and every animal is happy, then every dog is
both well-fed and happy.

This is a complex of categorical sentences:

 If ∀x(Dx → Fx) and ∀y(Dy → Ay) and ∀z(Az → Hz) then ∀z(Dz → Fz ∧ Hz)

that is:
 ∀x(Dx → Fx) ∧∀y(Dy → Ay) ∧∀z(Az → Hz) → ∀z(Dz → Fz ∧ Hz)

Sometimes a sentence is apparently ambiguous, but variable binding resolves the ambiguity. This
happens in the example

 Each dog is happy unless it isn't well-fed

We decided above to include the 'unless' as part of the consequent of the quantified conditional. We
might try instead to make 'unless' be the major connective:

 CHAPTER 3 SECTION 5

Copyrighted material Chapter Three -- 14

 ∀x(x is a dog → x is happy) unless x isn't well-fed
 ∀x(Dx → Hx) ∨ ~Fx

However, this leaves the 'x' unbound by the quantifier. You have a formula that is not a sentence, and
there is no way to interpret the unbound occurrence of 'x'. Whenever a symbolization of an ordinary
meaningful English sentence ends up with a variable that is not bound by any quantifier, the symbolization
will not be correct.

EXERCISES

2. Suppose that `A' stands for `is a U.S. state', `C' for `is a city', `L' for `is a capital', and `E' for `is in the
Eastern time zone'. What are the truth values of these sentences?
 a. ∀x(Cx → Lx)
 b. ∃x(Cx ∧ Lx)
 c. ∃x(Cx ∧ Lx ↔ Ex)
 d. ∀x(Cx ∧ Ex → Ax)
 e. ~∃x(Ax ∧ Ex)
 f. ∃x(Cx ∧ Ex) ∧ ∃x(Cx ∧ ~Ex)
 g. ∃x(Cx ∧ Ex ∧ Ax)
 h. ~∃x(Cx ∧ ~Cx)

3. Symbolize the following sentences:

 a. All giraffes are spotted.
 b. All clever giraffes are spotted.
 c. No clever giraffes are spotted.
 d. Every giraffe is either spotted or drab.
 e. Some giraffes are clever.
 f. Some spotted giraffes are clever.
 g. Some giraffes are clever and some aren't.
 h. Some spotted giraffes aren't clever.
 i. No spotted giraffe is clever but every unspotted one is.
 j. Every clever spotted giraffe is either wise or foolhardy.
 k. Either all spotted giraffes are clever, or all clever giraffes are spotted.
 l. Every clever giraffe is foolhardy.
 m. If some giraffes are wise then not all giraffes are foolhardy.
 n. All giraffes are spotted if and only if no giraffes aren't spotted.
 o. Nothing is both wise and foolhardy.

 CHAPTER 3 SECTION 5

Copyrighted material Chapter Three -- 15

5C "ONLY"

In chapter 1 we looked at how 'only' affects the symbolization of conditionals. The same word occurs in
connection with quantification. Consider the sentence:

 Only dogs are happy

Reflection on what this says indicates that it could be symbolized the same as:

 Any non-dog isn't happy

and thus as:
 ∀x(~Dx → ~Hx)

But intuitively the sentence is also equivalent to:

 Anything that's happy is a dog

 ∀x(Hx → Dx)

Fortunately, we will be able to prove later that these two forms are equivalent.

Recall that the effect of 'only' on 'if' is to reverse antecedent and consequent. Something like that occurs
here too; compare the sentences:

 All dogs are happy ∀x(Dx → Hx)
 Only dogs are happy ∀x(Hx → Dx)

They look pretty much the same except that the antecedent and consequent of the quantified conditional
are switched.

Here are some examples of symbolizations of sentences using 'only':

 Dogs can run, but only birds can fly.

 ∀x(Dx → Cx) ∧∀x(Fx → Bx)

 Only birds can fly, but not all of them can.

 ∀x(Fx → Bx) ∧~∀x(Bx → Fx)

 Dogs are happy and frisky; giraffes are happy, but only the well-fed ones are frisky.

 ∀x(Dx → Hx ∧ Fx) ∧∀x(Gx → Hx) ∧∀x(Gx ∧ Fx → Ex)

(Using 'E_' for '_ is well-fed'.)

Notice that the last conjunct is not symbolized as:

 ∀x(Fx → Gx ∧ Ex)

This would say that everything that is frisky is a well-fed giraffe, which is not what is intended. The point is
that among giraffes only the well-fed ones are frisky. The last conjunct could also be symbolized as:

 ∀x(Gx → (Fx → Ex))

The word 'only' can create ambiguity. Consider the sentence:

 Only brown dogs are happy

This could be read as saying that everything that is happy is a brown dog:

 ∀x(Hx → Bx ∧ Dx)

or it could be read as saying that among dogs, every happy one is brown:

 CHAPTER 3 SECTION 5

Copyrighted material Chapter Three -- 16

 ∀x(Dx → (Hx → Bx))

Usually we don't notice such ambiguity since it is usually clear from context which is meant. Emphasis
also helps; saying "Only brown dogs are happy" indicates that among dogs, only the brown ones are
happy. Out of context, the sentence is simply ambiguous.

EXERCISES

4. Symbolize these sentences. If a sentence is ambiguous, give all pertinent symbolizations.

 a. Only friendly elephants are handsome
 b. If only elephants are friendly, no giraffes are friendly
 c. Only the brave are fair.
 d. If only elephants are friendly then every elephant is friendly
 e. All and only elephants are friendly.
 f. If every elephant is friendly, only friendly animals are elephants
 g. If any elephants are friendly, all and only giraffes are nasty
 h. Among spotted animals, only giraffes are handsome.
 i. Among spotted animals, all and only giraffes are handsome
 j. Only giraffes frolic if annoyed.

5D RELATIVE CLAUSES
Relative clauses modify nouns, as adjectives do, although relative clauses are typically more complex.
There are two sorts of relative clause: restrictive and non-restrictive, illustrated by:

 Non-restrictive Dogs, which are frisky, are cute
 Restrictive Dogs which are frisky are cute

Non-restrictive relative clauses do not affect the noun they follow; instead they are used to insert a
comment in addition to what the main sentence says. The main sentence of the non-restrictive example is
that dogs are cute, and the additional comment is that they are frisky. The entire sentence is used to
make both of these claims. If we want to capture the whole content of a sentence with a non-restrictive
relative clause the best we can do is to conjoin the two claims:

 Dogs are frisky ∧ Dogs are cute ∀x(Dx → Fx) ∧∀x(Dx → Cx)

A restrictive relative clause restricts the content of the noun to which they are adjoined. In the restrictive
example above, it is frisky dogs that are said to be cute, not dogs in general. The symbolization is:

 Dogs which are frisky are cute ∀x(Dx ∧ Fx → Cx)

You can usually tell a non-restrictive relative clause, for it is set off from its surroundings by commas
before and after it. When there are no commas, the reading is restrictive.

Restrictive relative clauses are like adjectives, in that in logical form they are conjoined with the noun that
they modify. In the above example 'dogs which are frisky' becomes the conjunction 'Dx ∧ Fx'. When the
relative clause is more complex, it gives you something complex to conjoin to the part originating with the
noun that is modified. This is seen in:

 Every dog which is neither cute nor frisky is not happy.

 ∀x(Dx ∧ ~(Cx ∨ Fx) → ~Hx)

 CHAPTER 3 SECTION 5

Copyrighted material Chapter Three -- 17

EXERCISES

5. Symbolize these sentences.

 a. Every giraffe which frolics is happy
 b. Only giraffes which frolic are happy
 c. Only giraffes are animals which are long-necked.
 d. If only giraffes frolic, every animal which is not a giraffe doesn't frolic.
 e. Some giraffe which frolics is long-necked or happy.
 f. No giraffe which is not happy frolics and is long-necked.
 g. Some giraffe is not both long-necked and happy.

5E IMPLICIT UNIVERSAL QUANTIFIERS
In the symbolizations we have considered so far, symbolic quantifiers have originated naturally from
"universal" quantifier words of English. For example, the universal quantifier is often used in symbolizing a
sentence with one of the words 'each', 'every', 'all' in it, and the position of the English quantifier word often
corresponds to the position of the symbolic quantifier. In 'Every A is B' the English sentence begins with
'every' and its symbolization begins with '∀x'.

Sometimes a universal quantification originates with an English indefinite article 'a' or 'an'. This happens
in:
 A dog that is well-fed is happy.

This sentence is most naturally treated as conveying a universal claim, that any dog that is well-fed is
happy:
 ∀x(Dx ∧ Fx → Hx)

This is in spite of the fact that the indefinite article often conveys an existential claim, as in:

 A girl left early

 ∃x(Gx ∧ Lx)

A good test for this is whether the indefinite article can be paraphrased by 'each'; this is natural in the first
example, but not in the second.

A more interesting case is when an indefinite article occurs inside a sentence, indicating a universal
quantification with scope over the whole sentence. This happens in:

 If a dog is well-fed, it is happy

This appears to be a conditional of the form:

 a dog is well-fed → it is happy

But that won't do, since there is nothing to bind the variable that comes from the 'it' in the consequent.
Instead, the indefinite article indicates a universal quantification of dog, with the rest of the sentence within
its scope. That is, it has the form:

 ∀x(x is a dog → (x is well-fed → x is happy))

 ∀x(Dx →(Fx → Hx))

This happens in the following two examples as well. In the first:

 A giraffe is wise if and only if it's not foolhardy.

 CHAPTER 3 SECTION 5

Copyrighted material Chapter Three -- 18

This has a logical form something like:

 Every giraffe is such that it is wise if and only if it is not foolhardy

 ∀x(Gx → (Wx ↔ ~Fx))

This sentence is similar:

 A brown dog is frisky only if it is happy

 Every brown dog is such that it is frisky only if it is happy

 ∀x(Bx ∧ Dx → (Fx → Hx))

The idea that indefinite phrases sometimes correspond to universal quantifiers with wide scope applies
also to plural indefinites -- to plural nouns or noun phrases which have no article or quantifier word before
them. An example is:

 If dogs are well-fed, then they are happy

 ∀x(x is a dog → (x is well-fed → x is happy))

 ∀x(Dx → (Ex → Hx))

EXERCISES

6. Symbolize the following sentences.

 a. If a giraffe is happy then it frolics unless it is lame.
 b. A monkey frolics unless it is not happy.
 c. Among giraffes, only happy ones frolic.
 d. All and only giraffes are happy if they are not lame.
 e. A giraffe frolics only if it is happy.
 f. Only giraffes frolic if happy.
 g. All monkeys are happy if some giraffe is.
 h. Cute monkeys frolic.
 i. Giraffes run and frolic if and only if they are blissful and exultant.
 j. If those who are healthy are not lame, then if they are exultant, they will frolic.
 k. Only giraffes and monkeys are blissful and exultant.
 l. The brave are happy.
 m. If a giraffe frolics, then no monkey is blissful unless it is.
 n. Giraffes and monkeys frolic if happy.

 CHAPTER 3 SECTION 6

Copyrighted material Chapter Three -- 19

6 DERIVATIONS WITH QUANTIFIERS
Our first step in including quantificational sentences in derivations is to extend all of the rules from
chapters 1 and 2 to include formulas which have free variables. Although we continue to use derivations
for arguments consisting entirely of sentences, it will be essential to also allow formulas inside of the
derivations.

In this section we introduce three rules for quantifiers.

Rule ui (universal instantiation): The first rule is simple; it says that if everything satisfies a certain
condition, any particular thing satisfies that condition. That is, from any universally quantified formula one
may infer the result of removing the initial quantifier, and replacing every occurrence of the variable that it
was binding by a name letter or by a variable:

 Rule ui: (universal instantiation):

 ∀x ...x...x... ∀x ...x...x...
 ∴ …b…b… ∴ …y…y…

Every occurrence of 'x' that '∀x' was binding must be replaced with the same name or
variable.

An example of this rule is to validate the argument from 'everything is either mental or physical' to
'Disneyland is either mental or physical':

 ∀x(Mx ∨ Px)
 ∴ Ma ∨ Pa by rule ui

A more typical application would be to use rule ui to validate an inference like this:

 Every giraffe is happy
 Fido is a giraffe
 ∴ Fido is happy

 ∀x(Gx → Hx)
 Gf
 ∴ Hf

A derivation using rule ui to validate this argument could go like this:

 1. Show Hf
 2. Gf → Hf pr1 ui
 3. Hf pr2 2 mp dd

The universal instantiation step takes us from "everything is such that if it is a giraffe then it is happy" to "if
Fido is a giraffe then Fido is happy". Modus ponens does the rest.

In using rule ui the quantifier must be on the front of the formula and it must have scope over the whole
formula. If it has a narrower scope, then it is fallacious to apply the rule. For example, this inference is not
permitted:

 ∀xFx → Fg if everything is happy, Gertrude is happy (logically true)
 ∴ Fb → Fg if Betty is happy, Gertrude is happy (not logically true)

 CHAPTER 3 SECTION 6

Copyrighted material Chapter Three -- 20

Rule eg (existential generalization): The second rule is the reverse of the first, using the existential
quantifier instead of the universal. It says that if a particular thing satisfies a certain condition, then
something satisfies it. That is, from any formula one may infer the result of replacing some occurrences
of a name letter or a variable in it by a new variable, putting an existential quantifier on the front using that
variable.

 Rule eg (existential generalization):

 ...b...b... ...y...y...
 ∴ ∃x…x…b… ∴ ∃x…x…b…

(You need not replace every occurrence of 'b' or of 'y' by 'x'.)

For example, if Fido is a brown dog, then something is a brown dog:

 Bf ∧ Df
 ∴ ∃x(Bx ∧ Dx)

The existential quantifier that is put on the front must have scope over the whole formula. If the formula
you start with is in informal notation, you may need to restore the dropped parentheses before applying the
rule, as we did here.

Here is a little derivation that uses both of these rules. It validates the argument:

 Every dog is happy
 Fido is a dog
 ∴ Something is happy

 ∀x(Dx → Hx)
 Df
 ∴ ∃xHx

 1. Show ∃xHx
 2. Df → Hf pr1 ui
 3. Hf 2 pr2 mp
 4. ∃xHx 3 eg dd

There is a difference between Rules ui and eg. When using rule ui, you must replace every occurrence of
the variable that the initial quantifier binds with a name or variable. For example, you cannot do this:

 ∀x(Dx → Hx)
 ∴ Dx → Hb

That is:

 Everything is such that if it is a dog then it is happy.
 ∴ If it is a dog then Bob is happy

Rule eg is different. When using rule eg you needn't replace all of the occurrences. For example, from:

 Bob is happy or Bob is sad

you may infer

 Something is such that Bob is happy or it is sad.

This conclusion looks odd, but it should be clear that it follows logically.

 CHAPTER 3 SECTION 6

Copyrighted material Chapter Three -- 21

Here is another example of a derivation using both of our new rules:

 Fido is a dog
 Every dog is happy
 ∴ Some dog is happy

 1. Show ∃x(Dx ∧ Hx)
 2. Df → Hf pr2 ui
 3. Hf 2 pr1 mp
 4. Df ∧ Hf pr1 3 adj
 5. ∃x(Dx ∧ Hx) 4 eg dd

There is a constraint on both of these rules: there must be no "capturing". If a new variable appears in the
conclusion of either rule that was not there previously, it must not be "captured" by a quantifier in the
formula. Specifically, if a new variable appears, none of its new occurrences may be bound by a quantifier
already in the formula. For example, this use of rule eg is not permitted:

 Df ∧ ∀x(Hf → Gx)
 ∴ ∃x(Dx ∧ ∀x(Hx → Gx)) the universal quantifier captures the variable 'x' that replaces

the second 'f'

No capturing:

When using rule ui or rule eg a new variable must not be introduced if some of its
new occurrences are bound by a quantifier in the original formula.

You will not often encounter cases of capturing; they usually happen by accident. The possibility of
capturing can be avoided by always choosing a variable that does not already occur in the formula.

EXERCISES

1. Symbolize these arguments and produce derivations for them.

a. The sky is blue
 Everything that is blue is pretty
 ∴ Something is pretty

b. Every hyena is grey.
 Every hyena is an animal
 Jenny is a hyena
 ∴ Some animal is grey

c. If some hyena is grey, every hyena is grey
 Every scavenger is grey
 Jenny is a hyena and a scavenger
 Kathy is a hyena
 ∴ Kathy is grey

 CHAPTER 3 SECTION 6

Copyrighted material Chapter Three -- 22

Rule ei (existential instantiation): Our third rule is rule ei (existential instantiation). It works just like
universal instantiation, except that (1) it applies to an existential quantifier, (2) you must instantiate to a
variable, not to a name letter, and (3) you must use a variable that has not already occurred in the
derivation or in any of the premises that have been cited in the derivation. This rule is meant to capture
the following kind of reasoning. Suppose that you are given the information:

 Every dog is happy
 Something is a dog

and you wish to infer that something is happy. You are not told that any particular named thing is a dog;
you just know that there are some. You might reason as follows:

By the second premise, there are some dogs. Call one of them "z". Then z is happy (by the first
premise), so something is happy.

What you did was to choose a label, 'z', for some dog, without specifying which dog it is. Then you made
inferences using that label, ending up with a conclusion that does not contain the label. The label was just
a device to reason with.

It was important that you chose a label that was not already assigned to something. If you used an
already existing name for the label, that could lead to fallacies. For example, consider this bad argument:

 Every dog is happy
 Something is a dog
 Fluffy is a cat
 ∴ Some cat is happy

It would be wrong to reason like this:

By the second premise, there are some dogs. Call one of them "Fluffy". Then Fluffy is happy (by
the first premise). Also, Fluffy is a cat (third premise). So some cat is happy.

By using the name 'Fluffy' for one of the dogs you were implicitly assuming that Fluffy was a dog. That
assumption is not justified. Formally we get around such an unjustified assumption by using only variables
for labels, and by requiring that these variables are not already used for something else. We accomplish
this by requiring that the new variable not have occurred already in the derivation:

 Rule ei: (existential instantiation):

 ∃x ...x...x...
 ∴ …y…y…

 You must replace every occurrence of 'x' that '∃x' was binding.
 The variable 'y' must not occur in the existentially quantified formula itself, or in
previous lines in the derivation, or in a premise that has been cited on a previous line.

Here now is a derivation using all of our new rules:

 ∀x(Bx ∧ Dx → Ex) Every brown dog is well-fed.
 ∃x(Dx ∧ Fx) Some dog is frisky
 ∀y(Fy → By) Everything frisky is brown
 ∴ ∃z(Dz ∧ Ez) ∴ Some dog is well-fed

 CHAPTER 3 SECTION 6

Copyrighted material Chapter Three -- 23

 1. Show ∃z(Dz ∧ Ez)
 2. Du ∧ Fu pr2 ei ('u' has not already occurred in the derivation)
 3. Fu → Bu pr3 ui
 4. Bu 2 s 3 mp
 5. Bu ∧ Du 2 s 4 adj
 6. Bu ∧ Gu → Eu pr1 ui
 7. Eu 5 6 mp
 8. Du ∧ Eu 2 s 7 adj
 9. ∃z(Dz ∧ Ez) 8 eg dd

The reader should check to see that each of the new rules is properly used.

This derivation illustrates an important strategy rule. Often you will have an opportunity to apply ei to
introduce a variable, and then use ui to instantiate to that variable. In the derivation just given, ei
introduces 'u' on line 2 and ui is used twice to instantiate to 'u', on lines 3 and 6. The strategy rule is that
when this is a possibility, you should always apply rule ei before you apply rule ui.

Strategy hint: When using both ei and ui to instantiate to the same variable, apply
rule ei before rule ui.

This is because if you try using ui first, you will not then be able to use ei to instantiate to the same
variable, because the variable will not then be new. For example, suppose that you started the above
derivation with:

 1. Show ∃z(Dz ∧ Ez)
 2. Fu → Bu pr3 ui
 3. Du ∧ Fu pr2 ei

Line 3 is fallacious because you have instantiated to 'u', but 'u' has already occurred in the derivation,
which violates the constraint that the variable used in ei must be new.

Here is a straightforward illustration of our three rules:

 Every crook who steals a lot and doesn't get caught is affluent..
 No crook who gets caught is affluent.
 Some lucky crooks steal a lot.
 Some crooks who aren't lucky don't steal a lot.
 Every crook who isn't lucky gets caught.
 Every crook who is lucky doesn't get caught.
 ∴ Some crooks are affluent and some aren't.

 ∀x(Cx ∧ Ex ∧ ~Gx → Ax)
 ∀x(Cx ∧ Gx → ~Ax)
 ∃x(Lx ∧ Cx ∧ Ex)
 ∃x(Cx ∧ ~Lx ∧ ~Ex)
 ∀x(Cx ∧ ~Lx → Gx)
 ∀x(Cx ∧ Lx → ~Gx)
 ∴ ∃x(Cx ∧ Ax) ∧∃x(Cx ∧ ~Ax)

(In doing this derivation recall that 'P ∧ Q ∧ R' is informal notation for '((P ∧ Q) ∧R)'.)

 CHAPTER 3 SECTION 6

Copyrighted material Chapter Three -- 24

 1. Show ∃x(Cx ∧ Ax) ∧∃x(Cx ∧ ~Ax)
 2. Lz ∧ Cz ∧ Sz pr3 ei
 3. Cz ∧ Lz → ~Gz pr6 ui
 4. Sz 2 s
 5. Lz 2 s s
 6. Cz 2 s s
 7. ~Gz 5 6 adj 3 mp
 8. Cz ∧ Sz ∧ ~Gz → Az pr1 ui
 9. Az 6 4 adj 7 adj 8 mp
 10. Cz ∧ Az 6 9 adj
 11. ∃x(Cx ∧ Ax) 10 eg
 12. Cu ∧ ~Lu ∧ ~Eu pr4 ei
 13. Cu ∧ ~Lu 12 s
 14. Cu ∧ ~Lu → Gu pr5 ui
 15. Gu 13 14 mp
 16. Cu ∧ Gu → ~Au pr2 ui
 17. ~Au 13 s 15 adj 16 mp
 18. Cu ∧ ~Au 13 s 17 adj
 19. ∃x(Cx ∧ ~Ax) 18 eg
 20. ∃x(Cx ∧ Ax) ∧∃x(Cx ∧ ~Ax) 11 19 adj dd

Notice that the ei step in line 2 precedes the ui steps in lines 3 and 8, and that the ei step in line 12
precedes the ui steps in lines 14 and 16.

EXERCISES
2. Here is a fallacious derivation to validate this argument:

 ∃x(Nx ∧ Ex) some number is even
 ∃x(Nx ∧ Ox) some number is odd
 ∴ ∃x(Nx ∧ Ox ∧ Ex) some number is both odd and even

Identify the error in the derivation.

 1. Show ∃x(Nx ∧ Ox ∧ Ex)
 2. Nz ∧ Ez pr1 ei
 3. Nz ∧ Oz pr2 ei
 4. Nz ∧ Oz ∧ Ez 2 s 3 adj
 5. ∃x(Nx ∧ Ox ∧ Ex) dd

3. Produce derivations for each of the following (be careful to obey the strategy rule just given):

 a. theorem T202: ∴ ∀x(Fx → Gx) → (∃xFx → ∃xGx)
 b. half of T203: ∴ ∃x~Fx → ~∀xFx
 c. half of T204: ∴ ∀x~Fx → ~∃xFx

 T201 ∀x(Fx → Gx) → (∀xFx → ∀xGx)
 T202 ∀x(Fx → Gx) → (∃xFx → ∃xGx)
 T203 ~∀xFx ↔ ∃x~Fx
 T204 ~∃xFx ↔ ∀x~Fx

 CHAPTER 3 SECTION 7

Copyrighted material Chapter Three -- 25

7 UNIVERSAL DERIVATIONS
We have two instantiation rules, one for each quantifier, and we have a generalization rule for the
existential quantifier. It is customary and useful to have some kind of universal generalization rule as well.
 For example, someone might want to reason as follows:

 Every dog is a mammal
 Every mammal is an animal
 ∴ Every dog is an animal

A natural approach might be like this. Let z be anything whatsoever. Instantiating the first premise tells us
that if z is a dog, it is a mammal; and instantiating the second premise tells us that if z is a mammal, it is
an animal. So using techniques from chapter 1, we may infer that if z is a dog, z is an animal. Now since
'z' was chosen to represent anything whatever, we can infer that everything is such that if it is a dog it is an
animal. That is, every dog is an animal.

What we want to capture is the idea that if you can show something for any arbitrarily chosen thing, it
holds for everything. Something like:

 Dz → Az
 ∴ ∀x(Dx → Ax) because z is anything at all

For technical reasons, this principle will be formulated not as a rule, but as a special kind of derivation. It
will take the form that if you want to show a universal claim, and you succeed in showing that it holds for a
variable, z, then if z is completely arbitrary, you may box and cancel the show line for the universal claim.
So the above reasoning will take this form: If you have a derivation of this form:

 Show ∀x(Dx → Ax)
 :::::
 :::::
 Dz → Az where z is completely arbitrary

Then you can box and cancel

 Show ∀x(Dx → Ax)
 :::::
 :::::
 Dz → Az ud where z is completely arbitrary

The requirement that z be completely arbitrary is realized by the technical requirement that 'z' shall not
have occurred free anywhere in the derivation above the show line.

 CHAPTER 3 SECTION 7

Copyrighted material Chapter Three -- 26

The "ud" notation is the name of our new form of derivation:

 Universal derivation:
 If you have a derivation of the following form:

 Show ∀x . . . x . . . x . . .
 :::::
 :::::
 . . . x . . . x . . .

Then if there are no uncancelled show lines in between the first and last lines
displayed, and if 'x' does not occur free on any line in the derivation available
from the show line, or in any premise cited in an available line, you may box
and cancel, using the notation 'ud'.

The reasoning suggested above may now be incorporated into a derivation like this:

 ∀x(Dx → Mx) Every dog is a mammal
 ∀y(My → Ay) Every mammal is an animal
 ∴ ∀z(Dz → Az) ∴ Every dog is an animal

 1. Show ∀z(Dz → Az)
 2. Dz → Mz pr1 ui
 3. Mz → Az pr2 ui
 4. Show Dz → Az
 5. Dz ass cd
 6. Mz 2 5 mp
 7. Az 3 6 mp cd
 8. 4 ud

The reader should check that this derivation meets the conditions necessary for a ud derivation.

In a previous exercise we proved half of theorem 203. The other half of T203 is more difficult.

 ∴ ~∀xFx → ∃x~Fx

It is easy to begin the derivation:

 1. Show ~∀xFx → ∃x~Fx
 2. ~∀xFx ass cd
 3. ?????

With no other guide, our strategy rules say to try id:

 1. Show ~∀xFx → ∃x~Fx
 2. ~∀xFx ass cd
 3. Show ∃x~Fx
 4. ~∃x~Fx ass id
 5. ???

Again there is no clear way to proceed. Since we are trying to derive any contradiction, we try to derive
the unnegation of line 2:

 CHAPTER 3 SECTION 7

Copyrighted material Chapter Three -- 27

 1. Show ~∀xFx → ∃x~Fx
 2. ~∀xFx ass cd
 3. Show ∃x~Fx
 4. ~∃x~Fx ass id
 5. Show ∀xFx
 6. ?????

Since we are trying to show a universally quantified formula, it is natural to try to show step 5 by means of
a universal derivation. We only need to show Fx.

 1. Show ~∀xFx → ∃x~Fx
 2. ~∀xFx ass cd
 3. Show ∃x~Fx
 4. ~∃x~Fx ass id
 5. Show ∀xFx
 6. Show Fx
 7. ???

It is easy now to show Fx by means of another indirect derivation:

 1. Show ~∀xFx → ∃x~Fx
 2. ~∀xFx ass cd
 3. Show ∃x~Fx
 4. ~∃x~Fx ass id
 5. Show ∀xFx
 6. Show Fx
 7. ~Fx ass id
 8. ∃x~Fx 7 eg
 9. ~∃x~Fx 4 r

This completes the indirect derivation, so we box and cancel. We have now completed each of the other
subderivations, so we box and cancel them too. The result is:

 1. Show ~∀xFx → ∃x~Fx
 2. ~∀xFx ass cd
 3. Show ∃x~Fx
 4. ~∃x~Fx ass id
 5. Show ∀xFx
 6. Show Fx
 7. ~Fx ass id
 8. ∃x~Fx 7 eg
 9. ~∃x~Fx 4 r 8 id
 10. 6 ud
 11. ~∀xFx 2 r 6 id
 12. 3 cd

 CHAPTER 3 SECTION 7

Copyrighted material Chapter Three -- 28

EXERCISES

1. Produce derivations for each of the following (be careful to obey the strategy rule just given):

 a. theorem T201: ∴ ∀x(Fx → Gx) → (∀xFx → ∀xGx)
 b. half of T204: ∴ ~∃xFx → ∀x~Fx (similar to the derivation of half of T203)
 c. half of theorem T205: ∴ ∀zFx → ~∃x~Fx

8 SOME DERIVATIONS
Many derivations take a common form. You begin with quantified sentences, and you remove quantifiers.
 Then you manipulate formulas using the techniques from chapters 1 and 2. Finally, you restore the
quantifiers. In some cases this is straightforward:

 Every bear is friendly
 Some bear is dangerous
 ∴ Something dangerous is friendly

 ∀x(Px → Qx)
 ∃y(Py ∧ Ry)
 ∴ ∃z(Rz ∧ Qz)

First we remove quantifiers using instantiation rules, being careful to apply ei before ui when that is
possible:

 1. Show ∃z(Rz ∧ Qz)
 2. Pu ∧ Ru pr2 ei
 3. Pu → Qu pr1 ui

We choose to use 'y' in the universal instantiation step because it gives us something useful. Choosing
other variables or names would be correct, but not useful.

Now we use sentential rules to get a formula that we can existentially quantify:

 4. Qu 2 s 3 mp
 5. Ru ∧ Qu 2 s 4 adj

Now we are in a position to existentially quantify line 5 to get the desired conclusion:

 6. ∃z(Rz ∧ Qz) 5 eg

We can then box and cancel:

 1. Show ∃z(Rz ∧ Qz)
 2. Pu ∧ Ru pr2 ei
 3. Pu → Qu pr1 ui
 4. Qu 2 s 3 mp
 5. Ru ∧ Qu 2 s 4 adj
 6. ∃z(Rz ∧ Qz) 5 eg dd

Strategy hint: When a line is available that begins with a universal or existential
quantifier, apply an instantiation rule, ei or ui, to derive an instance.

 CHAPTER 3 SECTION 8

Copyrighted material Chapter Three -- 29

When the conclusion is a universally quantified formula, it will very likely be derived by using a universal
derivation. When a universal derivation is used, it is usually best to set up the derivation as early as
possible. Consider this example:

 Every jaguar is a fast cat
 Every cat is an animal
 ∴ Every jaguar is a fast animal.

 ∀x(Jx → Fx ∧ Cx)
 ∀x(Cx → Ax)
 ∴ ∀x(Jx → Fx ∧ Ax)

Our initial show line is a universally quantified sentence:

 1. Show ∀x(Jx → Fx ∧ Ax)

We can derive line 1 if we can show the formula that you get by removing its initial quantifier. So set that
up as a show line:

 2. Show Jx → Fx ∧ Ax

This is a conditional, so try conditional derivation:

 3. Jx ass cd

The rest of the conditional derivation is relatively straightforward:

 4. Jx → Fx ∧ Cx pr1 ui
 5. Fx ∧ Cx 3 4 mp
 6. Cx → Ax pr2 ui
 7. Ax 5 s 6 mp
 8. Fx ∧ Ax 5 s 7 adj

We have derived the consequent of the conditional to be shown; after boxing and canceling we have:

 1. Show ∀x(Jx → Fx ∧ Ax)
 2. Show Jx → Fx ∧ Ax
 3. Jx ass cd
 4. Jx → Fx ∧ Cx pr1 ui
 5. Fx ∧ Cx 3 4 mp
 6. Cx → Ax pr2 ui
 7. Ax 5 s 6 mp
 8. Fx ∧ Ax 5 s 7 adj cd

Since line 2 has been shown, we may infer line 1 by universal derivation:

 1. Show ∀x(Jx → Fx ∧ Ax)
 2. Show Jx → Fx ∧ Ax
 3. Jx ass cd
 4. Jx → Fx ∧ Cx pr1 ui
 5. Fx ∧ Cx 3 4 mp
 6. Cx → Ax pr2 ui
 7. Ax 5 s 6 mp
 8. Fx ∧ Ax 5 s 7 adj cd
 9. 2 ud

 CHAPTER 3 SECTION 8

Copyrighted material Chapter Three -- 30

When the conclusion has both universal and existential quantifiers, the strategy is essentially to combine
those above, applying whichever strategy is relevant at the time. Consider this argument:

For every giraffe, there is a leopard which is happy if and only if it (the giraffe) is.
For every leopard, there is a monkey that is happy if and only if it (the leopard) is.
∴ For every giraffe, there is a monkey which is happy if and only if it (the giraffe) is.

 ∀x(Gx → ∃y(Ly ∧ (Hy ↔ Hx)))
 ∀x(Lx → ∃y(My ∧ (Hy ↔ Hx)))
 ∴ ∀x(Gx → ∃y(My ∧ (Hy ↔ Hx)))

The conclusion to be shown is universally quantified, so set up a universal derivation. In fact, this should
generally be done as early as possible.

Strategy hint: If a universal derivation is to be used to show a universally quantified
formula, ∀x□, set it up as early as possible, by inserting a Show line containing the
formula, □, following the quantifier.

This is done in line 2 here:

1. Show ∀x(Gx → ∃y(My ∧ (Hy ↔ Hx)))
 2. Show Gx → ∃y(My ∧ (Hy ↔ Hx))

Line 2 is a conditional, so try conditional derivation:

 3. Gx ass cd

Universally instantiating the first premise and using modus ponens is a natural thing to try:

 4. Gx → ∃y(Ly ∧ (Hy ↔ Hx)) pr1 ui
 5. ∃y(Ly ∧ (Hy ↔ Hx)) 3 4 mp

We now have derived an existentially quantified formula, and there are some universally quantified ones in
the premises. Generally, when both rules ei and ui are possible, as we stated above, you should use rule
ei first. This is because rule ei introduces a variable which must be brand new in the derivation. If you do
ei first, then you can do ui using the variable introduced by ei. But if you do ui first, you cannot do ei using
that variable. In our derivation, the "ei before ui" strategy is relevant. Apply ei to line 5 using a variable
that does not already occur in the derivation:

 6. Lz ∧ (Hz ↔ Hx)

We can now make use of our second premise to get:

 7. Lz → ∃y(My ∧ (Hy ↔ Hz)) pr2 ui

We can obviously use line 6 to get the consequent of line 7. That consequent is also existentially
quantified, so we apply ei:

 8. ∃y(My ∧ (Hy ↔ Hz) 6 s 7 mp
 9. Mu ∧ (Hu ↔ Hz) 8 ei

Now look over what we have and what we want. We are in a conditional derivation, and we need to show
'∃y(My ∧ (Hy ↔ Hx))' to complete that derivation. This formula is existentially quantified, and so we will
probably derive it by existentially generalizing something. That is, we will existentially generalize
something of the form:

 M_ ∧ (H_ ↔ Hx)

We already have something very close to that, on line 9; we could get what we want by deriving a formula

 CHAPTER 3 SECTION 8

Copyrighted material Chapter Three -- 31

just like line 9 but with 'x" instead of 'z'. So suppose we try to derive ' Mu ∧ (Hu ↔ Hx)'. We already have
the left conjunct, so the job is to derive the right conjunct 'Hu ↔ Hx'. This is a biconditional, so we need to
derive two conditionals, probably by conditional derivation, and then put them together by cb. That in fact
is easy to do:

 10. Show Hu → Hx
 11. Hu ass cd
 12. Hz 9 s bc 11 mp
 13. Hx 6 s bc 12 mp cd
 14. Show Hx → Hu
 15. Hx ass cd
 16. Hz 6 s bc 15 mp
 17. Hu 9 s bc 16 mp cd
 18. Hu ↔ Hx 10 14 cb

To finish, we only need to put line 18 together with the first conjunct on line 9, and existentially generalize:

 19. Mu ∧ (Hu ↔ Hx) 9 s 18 adj
 20. ∃y(My ∧ (Hy ↔ Hx)) 19 eg

This completes our conditional derivation, so we now have:

1. Show ∀x(Gx → ∃y(My ∧ (Hy ↔ Hx)))
 2. Show Gx → ∃y(My ∧ (Hy ↔ Hx))
 3. Gx ass cd
 4. Gx → ∃y(Ly ∧ (Hy ↔ Hx)) pr1 ui
 5. ∃y(Ly ∧ (Hy ↔ Hx)) 3 4 mp

6. Lz ∧ (Hz ↔ Hx) 5 ei
 7. Lz → ∃y(My ∧ (Hy ↔ Hz)) pr2 ui
 8. ∃y(My ∧ (Hy ↔ Hz) 6 s 7 mp
 9. Mu ∧ (Hu ↔ Hz) 8 ei
 10. Show Hu → Hx
 11. Hu ass cd
 12. Hz 9 s bc 11 mp
 13. Hx 6 s bc 12 mp cd
 14. Show Hx → Hu
 15. Hx ass cd
 16. Hz 6 s bc 15 mp
 17. Hu 9 s bc 16 mp cd
 18. Hu ↔ Hx 10 14 cb
 19. Mu ∧ (Hu ↔ Hx) 9 s 18 adj
 20. ∃y(My ∧ (Hy ↔ Hx)) 19 eg cd

 CHAPTER 3 SECTION 8

Copyrighted material Chapter Three -- 32

Line 2 has now been shown by the conditional derivation. Now we only need to add line 21, and box and
cancel, finishing the universal derivation.

1. Show ∀x(Gx → ∃y(My ∧ (Hy ↔ Hx)))

 2. Show Gx → ∃y(My ∧ (Hy ↔ Hx))
 [[DETAILS ABOVE]]

 21. 2 ud

EXERCISES

1. Symbolize these arguments and provide derivations to validate them. Give an explicit scheme of
abbreviation for each.

a. If history is right, then if anyone was strong, Hercules was strong.
 Only those who work out are strong, and only those with self-discipline work out.
 ∴ If Hercules does not have self-discipline, then either history is not right or nobody is strong.

b. If some giraffes are not happy, then all giraffes are morose.

Some giraffes ponder the mysteries of life.
 ∴ If some giraffes are not morose, then some who ponder the mysteries of life are happy.

c. There is not a single critic who either likes art or can paint.

Some level-headed people are critics.
Anyone who can't paint is uneducated.

 ∴ Some level-headed people are uneducated.

d. No astronaut is a good dancer.

Every singer is warm-blooded.
If something is warm-blooded and is not a good dancer, then nothing that is either a singer or
an astronaut is exultant.

 ∴ If some astronaut is a singer, then no singer is exultant.

e. All students who have a sense of humor or are brilliant seek fame.
 Anyone who seeks fame and is brilliant is insecure.
 Whoever is a mogul is brilliant.
 ∴ Every student who is a mogul.

f. There is a monkey that is happy if and only if some giraffe is happy.
 There is a monkey that is happy if and only if some giraffe is not happy.
 All monkeys are happy.
 ∴ It is not the case that either every giraffe is happy or none are.

g. For every astronaut that writes poetry, there is one that doesn't.

For every astronaut that doesn't write poetry, there is one that does.
 ∴ If there are any astronauts, some write poetry and some don't.

2. Derive theorems 203-208, 231-232.

 T203 ~∀xFx ↔ ∃x~Fx
 T204 ~∃xFx ↔ ∀x~Fx
 T205 ∀xFx ↔ ~∃x~Fx
 T206 ∃xFx ↔ ~∀x~Fx

 CHAPTER 3 SECTION 8

Copyrighted material Chapter Three -- 33

 T207 ∃x(Fx ∨ Gx) ↔ ∃xFx ∨ ∃xGx
 T208 ∀x(Fx ∧ Gx) ↔ ∀xFx ∧ ∀xGx
 T209 ∃x(Fx ∧ Gx) → ∃xFx ∧ ∃xGx
 T210 ∀xFx ∨ ∀xGx → ∀x(Fx ∨ Gx)
 ::::::::
 T231 ∀xFx ↔ ∀yFy
 T232 ∃xFx ↔ ∃yFy

9 DERIVED RULES

We have looked at formulas that have quantifiers on their front, or quantifiers that end up on front after a
step such as modus ponens. Things are different if those quantifiers are preceded by a negation sign.
Consider the following simple derivation:

 Every A is B.
 Nothing is both B and C.
 So every A isn't C.

 ∀x(Ax → Bx)
 ~∃x(Bx ∧ Cx)
 ∴ ∀x(Ax → ~Cx)

This is intuitively valid, but deriving it requires slightly indirect reasoning. Our conclusion is universally
quantified, so we set up a universal derivation right away:

 1. Show ∀x(Ax → ~Cx)
 2. Show Ax → ~Cx

This is a conditional, so we try conditional derivation:

 3. Ax ass cd

We can spell out some obvious consequences of what we have by instantiating the first premise and doing
modus ponens:

 4. Ax → Bx pr1 ui
 5. Bx 3 4 mp

The second premise in fact is not anything we can make use of by applying any of our quantifier rules.
Some other approach is needed. At this point it is useful to fall back on a technique from chapter 1; we
are trying to derive '~Cx", so try to derive it by indirect derivation:

 6. Show ~Cx
 7. Cx ass id

We are not in a position to use the second premise directly, but we can use it indirectly by deriving
something that contradicts it. This is simple in two lines:

 8. Bx ∧ Cx 5 7 adj
 9. ∃x(Bx ∧ Cx) 8 eg

Now we complete our indirect derivation with:

 10. ~∃x(Bx ∧ Cx) pr2 9 id

boxing and canceling to get:

 CHAPTER 3 SECTION 9

Copyrighted material Chapter Three -- 34

 1. Show ∀x(Ax → ~Cx)
 2. Show Ax → ~Cx
 3. Ax ass cd
 4. Ax → Bx pr1 ui
 5. Bx 3 4 mp
 6. Show ~Cx
 7. Cx ass id
 8. Bx ∧ Cx 5 7 adj
 9. ∃x(Bx ∧ Cx) 8 eg
 10. ~∃x(Bx ∧ Cx) pr2 9 id

This essentially completes the derivation. For line 6 has completed the conditional derivation that starts
on line 2, and once the 'show' on line 2 is cancelled, line 1 follows by universal derivation:

 1. Show ∀x(Ax → ~Cx)
 2. Show Ax → ~Cx
 3. Ax ass cd
 4. Ax → Bx pr1 ui
 5. Bx 3 4 mp
 6. Show ~Cx
 7. Cx ass id
 8. Bx ∧ Cx 5 7 adj
 9. ∃x(Bx ∧ Cx) 8 eg
 10. ~∃x(Bx ∧ Cx) pr2 9 id
 11. 6 cd
 12. 2 ud

This kind of indirect strategy is typical of how to handle derivations with sentences that begin with negated
quantifiers when we use only our basic rules for quantifiers. However, it is usually more useful to use
some derived rules that let us replace initial negated quantifiers by unnegated ones of the opposite sort,
which may be used directly. The rule called quantifier negation does this. It lets you replace a negated
initial quantifier by the opposite quantifier followed by a negation. If we lump in all applications of double
negation, we get eight cases:

Rule qn (Quantifier negation)

 ~∀xFx ~∃xFx ∀xFx ∃xFx
 ∴ ∃x~Fx ∴ ∀x~Fx ∴ ~∃x~Fx ∴ ~∀x~Fx

 ~∀x~Fx ~∃x~Fx ∀x~Fx ∃x~Fx
 ∴ ∃xFx ∴ ∀xFx ∴ ~∃xFx ∴ ~∀xFx

These derived rules are based on T203-206, which are given in the last set of exercises.

Here is how we can use rule qn to shorten the derivation above. We begin as before:

 ∀x(Ax → Bx)
 ~∃x(Bx ∧ Cx)
 ∴ ∀x(Ax → ~Cx)

 CHAPTER 3 SECTION 9

Copyrighted material Chapter Three -- 35

 1. Show ∀x(Ax → ~Cx)
 2. Show Ax → Cx
 3. Ax ass cd
 4. Ax → Bx pr1 ui
 5. Bx 3 4 mp

Now instead of introducing a subderivation to make indirect use of the second premise, we apply rule qn
to that premise and then make direct use of the result; this lets us proceed quickly to get the desired '~Cx':

 1. Show ∀x(Ax → ~Cx)
 2. Show Ax → ~Cx
 3. Ax ass cd
 4. Ax → Bx pr1 ui
 5. Bx 3 4 mp
 6. ∀x~(Bx ∧ Cx) pr2 qn
 7. ~(Bx ∧ Cx) 8 ui
 8. ~Bx ∨ ~Cx 9 dm
 9. ~Cx 5 dn 8 mtp cd
 10. 2 ud

The advantage is not just that the derivation is two lines shorter, but the reasoning is simpler, and it is
easier to think up. For that reason we have this strategy hint:

Strategy hint: If an available formula begins with a negation sign immediately followed
by a quantifier which has scope over the rest of the formula, convert it to a more useful
formula by applying rule qn to it.

Here is another example of the use of rule qn. We are given this argument to validate:

 ~∃x(Ax ∧ Bx)
 ∀y(Ay ↔ ~Cy)
 ∀y(Dy → By)
 ~∀xCx
 ∴ ∃x~Dx

Neither the first nor the fourth premise may be used as an input to one of the basic quantifier rules.
However, rule qn turns them into useful forms.

 1. Show ∃x~Dx
 2. ∃x~Cx pr4 qn
 3. ~Ck 2 ei
 4. Ak ↔ ~Ck pr2 ui
 5. Ak 4 bc 3 mp
 6. ∀x~(Ax ∧ Bx) pr1 qn
 7. ~(Ak ∧ Bk) 6 ui
 8. ~Ak ∨ ~Bk 7 dm
 9. ~Bk 5 dn 8 mtp
 10. Dk → Bk pr3 ui
 11. ~Dk 9 10 mt
 12. ∃x~Dx 11 eg dd

 CHAPTER 3 SECTION 9

Copyrighted material Chapter Three -- 36

Rule av: There is another useful derived rule, though one not so often used. Given our explanation of
quantifiers, our choice of bound variables is irrelevant; one is as good as another. This is made explicit in
derived rule av ("alphabetic variance"). The rule says that alphabetically varying the choice of a bound
variable used with an initial quantifier yields an equivalent formula. In particular:

Rule av (alphabetic variance)

From a formula of the form '∀x . . . x . . x . . .', where the initial quantifier has scope over
the whole formula, you may infer '∀y . . . y . . y . . .', which is the result of changing the
variable 'x' in the quantifier to another variable, 'y', and changing all variables inside the
first formula that are bound by the initial quantifier to 'y'.

Likewise if the initial quantifier is '∃' instead of '∀'.

Constraint: No capturing is allowed. That is, this inference is not permitted if the new
variable becomes bound by a quantifier inside of the original formula.

As an example, from

∀z(Dz ∧ Ez → ∃u(Du ∨ Fz))

you may infer

∀w(Dw ∧ Ew → ∃u(Du ∨ Fw)).

But you may not infer

∀u(Du ∧ Eu → ∃u(Du ∨ Fu))

because that violates the no capturing rule.

Rule av is based on theorems T231 and T232, proved in the exercises.

Here is a situation in which rule av is useful. Suppose you are given the argument:

 ∀z(Dz ∧ Ez → ∃u(Du ∨ Fz))
 ∀x(Dx → ~Fx)
 ∴ ∀u(Du → ~Eu)

A natural derivation might go like this. The conclusion is universally quantified, so set up a universal
derivation:

 1. Show ∀u(Du → ~Eu)
 2. Show Du → ~Eu

This is a conditional, so set up a conditional derivation:

 3. Du ass cd

You now need to show ~Eu, and it is natural to set up an indirect derivation to show this:

 4. Show ~Eu
 5. Eu ass id

Now universally instantiate the first premise:

 6. Du ∧ Eu → ∃u(Du ∧ Fu) pr1 ui

Oops, you can't do that! The 'u' following the 'F' gets captured by the quantifier in the consequent of the
conditional. So what can we do? Different ideas might be tried, but here is an easy one, using rule av.
Don't start out to derive the conclusion, because it uses a variable that gets you in trouble. Instead, derive

 CHAPTER 3 SECTION 9

Copyrighted material Chapter Three -- 37

a sentence that is exactly like the conclusion, but one that uses a different variable. Then use rule av to
change this into the desired conclusion.

Here is a derivation which reaches a sentence just like the conclusion except for using a different variable:

 1. Show ∀u(Du → ~Eu)
 2. Show ∀w(Dw → ~Ew)
 3. Show Dw → ~Ew

4. Dw ass cd
 5. Show ~Ew
 6. Ew ass id
 7. Dw ∧ Ew → ∃u(Du ∧ Fw) pr1 ui no capturing occurs here
 8. ∃u(Du ∧ Fw) 4 6 adj 7 mp
 9. Ds ∧ Fw 8 ei
 10. Fw 9 s

11. Dw → ~Fw pr2 ui
 12. ~Fw 4 11 mp 10 id
 13. 3 ud

Because we used 'x' instead of 'u', we did not encounter any capturing problems in applying rule ui. Now
we merely apply rule av to line 2, and we are done:

 1. Show ∀u(Du → ~Eu)
 2. Show ∀w(Dw → ~Ew)
 3. Show Dw → ~Ew

4. Dw ass cd
 5. Show ~Ew
 6. Ew ass id
 7. Dw ∧ Ew → ∃u(Du ∧ Fw) pr1 ui
 8. ∃u(Du ∧ Fw) 4 6 adj 7 mp
 9. Ds ∧ Fw 8 ei
 10. Fw 9 s

11. Dw → ~Fw pr2 ui
 12. ~Fw 4 11 mp 10 id
 13. 3 ud
 14. ∀u(Du → ~Eu) 2 av dd

EXERCISES

1. Provide derivations for these arguments.

a. ~∃x(Ax ∨ Bx)
 ∀x∀y(Gx ∧ Hy → By)
 ∃xGx
 ∴ ∀x~Hx

b. ∃x(Hx ∧ ~∃y(Gy ∧ Hx))
 ∴ ∀y~Gy

c. ∀x(Ax → ∀y(Bx ↔ By))
 ∃zBz

 CHAPTER 3 SECTION 9

Copyrighted material Chapter Three -- 38

 ∴ ∀y(Ay → By)

d. ~∀x(Dx ∨ Ex)
 ∃x(Fx ↔ ~Ex) → ∀zDz
 ∴ ∃x~Fx

e. Jc ∧ ~Jd
 ∀xKx ∨ ∀x~Kx
 ∃x(Jx ∧ Kx) → ∀x(Kx → Jx)
 ∴ ~Kc

2. Provide derivations for these theorems:

 T229 ∃x(∃xFx → Fx)
 T230 ∃x(Fx → ∃xFx)
 T234 ∀x((Fx → Gx) ∧ (Gx → Hx) → (Fx → Hx))
 T235 ∀x(Fx → Gx) ∧ ∀x(Gx → Hx) → ∀x(Fx → Hx)
 T236 ∀x(Fx ↔ Gx) ∧ ∀x(Gx ↔ Hx) → ∀x(Fx ↔ Hx)
 T237 ∀x(Fx → Gx) ∧ ∀x(Fx → Hx) → ∀x(Fx → Gx ∧ Hx)
 T238 ∀xFx → ∃xFx
 T242 ~∀x(Fx → Gx) ↔ ∃x(Fx ∧ ~Gx)
 T243 ~∃x(Fx ∧ Gx) ↔ ∀x(Fx → ~Gx)
 T248 ∃xFx ∧ ∃x~Fx ↔ ∀x∃y(Fx ↔ ~Fy)

10 INVALIDITIES

In chapters 1 and 2 we studied tautological implication, which is formal validity that is due to how
sentences are built up out of sentential letters and connectives. A sentence whose premises tautologically
imply its conclusion is definitely valid. However, an argument may be valid even if its premises do not
tautologically imply its conclusion if its validity is due to something in addition to how it is built up with
connectives. We have seen examples of such arguments in this chapter, arguments such as:

 ∀xFx
 ∴ Fa

In this chapter we have studied the kind of formal validity which is due to how formulas are built up out of
names, monadic (one-place) predicates, variables, connectives and quantifiers. We call such validity
"MPC validity" ("monadic predicate calculus validity"). Derivations using the methods of chapters 1-3
show that the arguments they validate are MPC valid. An argument which is MPC valid is definitely valid.
Of course, an argument may be valid even if it is not MPC valid if its validity is due to something in addition
to how it is built up from names, variables, monadic predicates, quantifiers, and connectives. Some
examples of this are:

 Some boy fed every cat <Uses the two-place predicate 'fed'>
 ∴ Every cat was fed by a boy

 There are infinitely many prime numbers <Uses the quantifier 'infinitely many'>
 ∴ There is at least one prime number.

 Dr. Jekyll is tall <Uses 'is' in the sense of identity>
 Dr. Jekyll is Mr. Hyde
 ∴ Mr. Hyde is tall

Still, even though MPC validity is not the whole story, it remains an important kind of validity.

 CHAPTER 3 SECTION 10

Copyrighted material Chapter Three -- 39

So far in this chapter we have learned how to show that arguments are MPC valid by means of giving
derivations which validate the arguments. We have not yet focused on how to show that an argument is
not MPC valid. To do that we describe a logically possible situation in which, because of its MPC
structure, the argument has true premises and a false conclusion. It is convenient in doing this to consider
very "small" situations -- that is, situations in which only a small number of things exist. To illustrate this,
suppose we are given this argument:

 There are some fibers
 Every fiber is green
 Something isn't green
 ∴ Everything green is a fiber

Its MPC form is:

 ∃xFx
 ∀x(Fx → Gx)

∃x~Gx
 ∴ ∀x(Gx → Fx)

Now consider the following "small" situation:

 There are three things:
 The first is a fiber; the others are not.
 The first and the second are green; the third is not.

In this situation the first premise, '∃xFx', is true because the first thing is a fiber. The second premise,
'∀x(Fx → Gx)', is true because there is only one fiber, and it is green. The third premise is true because
something isn't green (the third thing). The conclusion is false because not everything that is green is a
fiber -- the second thing is green but not a fiber. So this is a situation in which the argument has true
premises and a false conclusion, and so it is not MPC valid.

If we reflect on this technique, we see that all that we need to show MPC invalidity is for this situation to
have a certain kind of structure. We need that there be three things; that the first (and no other) is F, and
that the first and second (but not the third) is G. Because this is enough to show that an argument of the
given form isn't MPC valid, no matter whether 'F' means 'fiber', or 'feline', or 'tarantula, or whatever, and
the same for 'G'. All that we need is that there is a situation with three things, of which the first is F and
the first and second G. We need only say what there is in the "universe" of the situation, and which of
these things are in the extensions of 'F' and 'G'; that is, which of these 'F' is true of, and which 'G' is true
of. We will describe such a counter-example by using this format:

Universe: First thing Second thing Third thing

 F: {the first thing}
 G: {the first thing, the second thing}

This indicates how many things there are in the situation, and it gives the "extensions" of 'F' and 'G'. The
extension of a predicate is just the set of things it is true of. So the information above tells us that 'F' is
true of the first thing and of nothing else, and it tells us that 'G' is true of the first and second things, and
not of the third.

Actually, to save on writing, we will just use some numbered icons, instead of 'first thing', 'second thing,
etc:

Universe:

 F: { }
 G: { , }

 CHAPTER 3 SECTION 10

Copyrighted material Chapter Three -- 40

This information describes a counter-example for the original argument, because it describes, in the most
minimal terms, the structure of a situation in which the premises of the argument are true and the
conclusion false.

Here are some more arguments that are not MPC valid, and counter-examples for them.

Counter-example #2:

 ∃x(Fx ∧ ~Gx)
 ∀x(Hx → ~Gx)
 ∃x(Hx ∧ Fx)
 ∴ ∀x(Fx → ~Gx)

Universe:

 F: { , }
 G: { , }
 H: { }

The first premise is true because 'F' is true of and G isn't. The second premise is true because
everything that 'H' is true of, namely , 'G' is not true of, and the third premise is true because both 'F' and
'H' are true of . But the conclusion is not true, because not everything that 'F' is true of is something that
'G' is not true of; is an example.

If the argument contains name letters, we indicate what they stand for in the given universe:

Counter-example #3:

 ∀x(Ax → (Bx ↔ Cx))
 Bk ∧ ~Ck
 ∴ ∀x~Ax

Universe:

 A: { }
 B: { , }
 C: { }
 k: <'k' stands for the first thing>

The first premise is true because whatever 'A' is true of, namely , is such that 'B' and 'C' are both true of
it, so their biconditional comes out true. The second premise is true because 'B' is true of what 'k' stands
for, namely , and 'C' isn't. The conclusion is false because 'A' is not false of everything; it is true of .

Counter-example #4:

 ∀x∃y(Ax ↔ By)
 ∃xBx ∧ ∃x~Bx
 ∀x(Ax → ~Cx)
 ∴ ~∀xCx

Universe:

 A: { } <true of nothing at all>
 B: { }
 C: { , }

 CHAPTER 3 SECTION 10

Copyrighted material Chapter Three -- 41

The first premise is true because everything is such that something is such that 'A' is true of the first if and
only if 'B' is true of the second. In fact, 'A' is true of nothing at all. And no matter what there is, there is
something that 'B' is not true of, namely . So there is always something that makes the biconditional
true. The second premise is clearly true since 'B' is true of something, namely , and 'B' is also false of
something, namely . The third premise is true because 'A' is true of nothing, so that every instance is a
conditional with a false antecedent. The conclusion is false because 'C' is indeed true of everything.

Thinking up counter-examples: If you believe that an argument is not MPC valid, how do you think up a
counter-example? There is a mechanical way to do this (described below), but it is too complex to be
useful in many cases. So we will usually have to be creative. Still, some general observations may be
useful in guiding our creativity. One approach that is often used is to build up the counter-example one
piece at a time, guided by what is needed to make the premises true and conclusion false. Suppose we
are given this argument:

 ∀x~(Fx ↔ Hx)
 ∃x(Hx ∧ Gx)
 ∃x(Hx ∧ ~Gx)
 ∴ ∀x(Fx → Gx)

So far, we don't know what will be in the universe. Begin by asking what is needed to make the
conclusion false. In this case, what is needed is that there be something that 'F' is true of and 'G' is not.
So write this:

 F: { }
 G: { } <not >

The notation "<not >" at the right is not part of the counter-example; it is merely a reminder to yourself
that when constructing the counter-example you should not add to the list of things that 'G' is true of,
because that could make the conclusion true.

Now consider the first premise; this says that whatever there is in the universe, 'F' and 'H' must disagree
about it. This must be kept in mind as a constraint on what can be in the counter-example. So far, in fact,
it tells us that since 'F' is true of , 'H' must not be:

 F: { }
 G: { } <not >
 H: { } <not >

Next, consider the second premise: there is something that 'G' and 'H' are both true of. It can't be , so fill
in :

 F: { }
 G: { } <not >
 H: { } <not >

Next, the third premise; this says that there is something that 'H' is true of which 'G' is not true of. It can't
be because 'H' cannot be true of . It can't be because 'G' is true of . So there must be a third
thing:
 F: { }
 G: { } <not >
 H: { , } <not >

At this point we have all of the information we need. This is our proposed counter-example:

 Universe:

 F: { }
 G: { }
 H: { , }

 CHAPTER 3 SECTION 10

Copyrighted material Chapter Three -- 42

If you check through the parts of the argument, you will see that the premises are all true and the
conclusion false.

Sometimes if you start with no predicate being true of anything, a counter-example falls into your lap.
Here is such a case. The argument is:

 ∀x(Jx → Kx ∨ Hx)
 ~∀x(~Kx → Jx)
 ~∃x(Kx ∧ ~Hx)
 Hc → ∃xJx
 ∴ ~∃x(Hx ∨ ~Jx)

Begin with this minimal proposed counter-example:

 Universe:

 H: { }
 J: { }
 K: { }
 c:

Let us see what we need to add to what the predicates are true of to make this a counter-example. The
first premise is already true because it is a quantified conditional with an antecedent that is false for each
thing in the universe. The second premise is true because its unnegation '∀x(Kx → ~Jx)' is false. This is
false because the part following the quantifier: '~Kx → Jx' is not true for every way of treating 'x' like a
name; it is false when 'x' stands for . The third is true because there is nothing that is K. The fourth is
true because it is a conditional with a false antecedent. And the conclusion is false because there is
indeed something that is either H or not J; is not J, so it is either H or not J. In short, the counter-
example works as stated. (Usually, of course, more work will be needed.)

You may sometimes wonder how many things to put into the universe in order to produce a counter-
example. There is no best way to determine this; usually you just put more things in when that seems to
be required by the premises being true and the conclusion false. There is, however, an upper limit on
what you need. If there is only one predicate letter in the argument, then you will need no more than two
things in the universe. If there are two predicate letters, you will need no more than four. If there are three
predicate letters, you will need no more than eight things. And so on. There is a formula for this: if there
are n predicate letters, if there is a counter-example, there is one using no more than 2n things.

Name letters have no effect on the number of things needed. If there are only two predicate letters, and
thirteen name letters, then if there is a counter-example at all, there is one with four or fewer things. (Of
course, if there are four things and thirteen name letters, several different constants will have to stand for
the same things. But that's OK.)

So here is a mechanical way to come up with a counter-example. Decide, by the formula above, the
maximum number of things needed in the universe for a counter-example. For example, suppose that
there are two monadic predicates in the argument. The a universe of size 22, that is, 4, will do. Now just
consider what choices the may be for the extension of predicate 'F'. There are 16 options:

{ }, { }, { }, { }, { }, { , }, { , }, { , }, { , }, { , }, { , }, { , , }, { , , },
{ , , }, { , , }, { , , , }

There are also 16 options for 'G'. So there are 16×16 = 256 options for possible counter-examples. If you
just check these out, one at a time, you are sure to find one if one exists. If there are three monadic
predicates there are 65,536 options. And so on.

 CHAPTER 3 SECTION 10

Copyrighted material Chapter Three -- 43

(Exercise for the reader: In the above calculation we have supposed that if there is a counter-example, we
can find one using a maximum size universe. We have ignored the possibility that there is, say, a
counter-example using a universe of size 3 but none using a universe of size 4. Why are we justified in
making that assumption?)

EXERCISES

1. Give counter-examples for each of the following arguments.

a. ∀x(Ax → ∃y(By ∧ ~Ay))
 ~∀xBx
 ~∃x(Bx ∧ Cx)
 ∴ ∃x(Ax ∧ Cx)

b. ∃x(Dx ∧ Ex ∧ ~Fx)
 ∃x(~Dx ∧ ~Ex)
 ∀x(Ex → Dx ∨ Fx)
 ∴ ∀x(Dx ∧ Ex → ~Fx)

c. ∃x(Fx ∧ Gx)
 ∃x(Fx ∧ ~Gx)
 ∃x(~Fx ∧ Gx)
 ∴ ∀x(~Fx → Gx) <requires more than three things in the universe>

d. ∀x∃y(Fx ↔ (Gy ∨ Fx))
 ∴ ~∃xFx → ~∃xGx

e. Ha ∧ ~Hb
 ∀x(Kx → Hx ∧ Jx)
 ∃x(Jx ∧ ~Kx)
 ∴ ∃x(Hx ∧ ~Jx)

 CHAPTER 3 SECTION 11

Copyrighted material Chapter Three -- 44

11 EXPANSIONS

In constructing counter-examples it is sometimes difficult to assess the truth value of a sentence in the
counter-example, especially when it contains overlapping quantifiers. For example, ask yourself whether
the following is a legitimate counter-example to this argument:

 ∀x∃y(Ax ↔ ~Ay)
 ∃x(Ax ∧ Bx)
 ∴ ∀xAx

Universe:

 A: { }
 B: { }

It is clear that this makes the conclusion false, and the second premise true. What about the first premise?
 It makes that true too. The first premise says that every thing in the universe is such that, there is a thing
in the universe such that it isn't A if the first thing is A, and it is A if the first thing isn't. This is in fact true in
the counter-example. But this may not be obvious to you. If not, there is a mechanical way to answer
such a question. It resembles truth tables in that it will automatically give you a yes or no answer, but it
may involve complexity. The technique is based on the idea that if there are a small number of things in
the universe, then a universally quantified claim is equivalent to a conjunction of unquantified claims got by
removing the quantifier and applying each resulting claim to a thing in the universe. And an existentially
quantified claim, in turn, is equivalent to a disjunction of such claims that are applied to each thing in the
universe.

Let us introduce a convention for naming things in a universe. When there are three things the names will
be 'a1', 'a2', and 'a3', where:

'a1' stands for
'a2' stands for
'a3' stands for .

(If there are fewer things, leave out 'a3', or both 'a2' and 'a3'. If there are more things add 'a4', 'a5', and so
on.) Now consider the sentence '∀xAx'. This says that everything in the universe is A. This is equivalent
to saying that the first thing is A and the second thing is A and the third thing is A. That is, it is equivalent
to the conjunction:

 ∀xAx is equivalent to Aa1 ∧ Aa2 ∧ Aa3
It is easy to check that this conjunction is true, because each conjunct is true.

The second premise is '∃x(Ax ∧ Bx)'. This is equivalent to saying that either the first thing is both A and B,
or the second thing is, or the third. That is, the quantified sentence is equivalent to this disjunction:

 ∃x(Ax ∧ Bx) is equivalent to (Aa1 ∧ Ba1) ∨ (Aa2 ∧ Ba2) ∨ (Aa3 ∧ Ba3)
It is easy to check that this disjunction is true, because at least one disjunct is true; the first disjunct is true.

The first premise, '∀x∃y(Ax ↔ ~Ay)', is more interesting. It is universally quantified, so it is equivalent to
the following conjunction:

 ∃y(Aa1 ↔ ~Ay) ∧ ∃y(Aa2 ↔ ~Ay) ∧ ∃y(Aa3 ↔ ~Ay)

It may be easy to determine that this is true.

The first conjunct is true because there is something which is not A if and only if is A. We know
that is A, and there is indeed at least one thing which is not A; for example, is not A.

The second conjunct is true because there is something which is not A if and only if is A. We

 CHAPTER 3 SECTION 11

Copyrighted material Chapter Three -- 45

know that is not A, and there is indeed at least one thing which is A; for example, is A.

The third conjunct is just like the second; it is true because there is something which is not A if and
only if is A. We know that is not A, and there is indeed at least one thing which is A; for
example, is A.

Even this, however, is a bit subtle. There is a way to make it even more mechanical. Namely, each
existentially quantified biconditional is equivalent to a disjunction. So this:

 ∃y(Aa1 ↔ ~Ay) ∧

∃y(Aa2 ↔ ~Ay) ∧
∃y(Aa3 ↔ ~Ay)

is equivalent to this:

 ((Aa1 ↔ ~Aa1) ∨ (Aa1 ↔ ~Aa2) ∨ (Aa1 ↔ ~Aa3)) ∧
 ((Aa2 ↔ ~Aa1) ∨ (Aa2 ↔ ~Aa2) ∨ (Aa2 ↔ ~Aa3)) ∧
 ((Aa3 ↔ ~Aa1) ∨ (Aa3 ↔ ~Aa2) ∨ (Aa3 ↔ ~Aa3))
And this is easy to evaluate. There are only three atomic sentences in this complex sentence: 'Aa1', 'Aa2',
and 'Aa3'. The first of these is true, and the others are false. It is thus easy to evaluate the biconditionals:

 ((Aa1 ↔ ~Aa1) ∨ (Aa1 ↔ ~Aa2) ∨ (Aa1 ↔ ~Aa3)) ∧
 false true true

 ((Aa2 ↔ ~Aa1) ∨ (Aa2 ↔ ~Aa2) ∨ (Aa2 ↔ ~Aa3)) ∧
 true false false

 ((Aa3 ↔ ~Aa1) ∨ (Aa3 ↔ ~Aa2) ∨ (Aa3 ↔ ~Aa3))
 true false false

Each disjunction has a true disjunct, so each is true. So the conjunction of the disjunctions is also true.
That is, the whole sentence, which is equivalent to '∀x∃y(Ax ↔ ~Ay)', is true. This process is tedious, but
completely mechanical.

If the counter-example has a universe of only one thing, then this device is easy to apply. Consider this
argument and the accompanying counter-example:

 ∀x∀y(Jx ↔ ∃z(Kz ↔ Jy))
 ∴ ∀xJx

 Universe:

 J: { }
 K: { }

It is clear that the conclusion is false, because 'J' is not true of . The premise is universally quantified,
so it is equivalent to a conjunction of all of its instances using names of things in the universe. Since there
is only one thing in the universe, this conjunction has only one conjunct. So:

 ∀x∀y(Jx ↔ ∃z(Kz ↔ Jy)) is equivalent to ∀y(Ja1 ↔ ∃z(Kz ↔ Jy))

But that in turn has a simpler equivalent:

 ∀y(Ja1 ↔ ∃z(Kz ↔ Jy)) is equivalent to Ja1 ↔ ∃z(Kz ↔ Ja1)
In 'Ja1 ↔ ∃z(Kz ↔ Ja1)' the existentially quantified formula on the right is equivalent to a disjunction with
only one disjunct, so we finally have:

Ja1 ↔ (Ka1 ↔ Ja1)
The truth values of the parts of this sentence are:

 CHAPTER 3 SECTION 11

Copyrighted material Chapter Three -- 46

 'Ja1 ↔ (Ka1 ↔ Ja1)'
 false true false

and the whole sentence is true, as desired.

One more example. Consider the argument, and proposed counter-example:

 ∀x∃y(Fx ∨ Gy)
 ~∀xFx
 ~∀xGx
 ∴ ~∃xGx

Universe:

F: { }
G: { }

It is pretty clear that this proposed counter-example makes the conclusion false, since something is G,
namely, . The third premise is true since not everything is G; isn't G. Likewise, the second premise is
true since not everything is F; is not F. What about the first? If you are not certain, you can expand it.
In this proposed counter-example, the sentence '∀x∃y(Fx ∨ Gy)', which starts with a universal quantifier, is
equivalent to this conjunction:

 ∃y(Fa1 ∨ Gy) ∧ ∃y(Fa2 ∨ Gy)

Each of the existentially quantified sentences is equivalent to a disjunction, so we have:

 ((Fa1 ∨ Ga1) ∨ (Fa1 ∨ Ga2)) ∧ ((Fa2 ∨ Ga1) ∨ (Fa2 ∨ Ga2))
evaluating the parts we have:

 ((Fa1 ∨ Ga1) ∨ (Fa1 ∨ Ga2)) ∧ ((Fa2 ∨ Ga1) ∨ (Fa2 ∨ Ga2))
 true false true true false false false true

 true true

Each conjunct is true, so the sentence is itself true.

EXERCISES

1. For each of the following argument use the method of expansions to determine whether the following is
a counterexample for it or not.

Universe:

 F: { }
 G: { , }
 H: { }

a. ∀x(Hx → ∃y(Fy ∧ ~Hy))
 ~∀xFx
 ~∃x(Fx ∧ Gx)
 ∴ ∃x(Hx ∧ Gx)

b. ∃x(Gx ∧ Hx ∧ ~Fx)
 ∃x(~Gx ∧ ~Hx)

 CHAPTER 3 SECTION 11

Copyrighted material Chapter Three -- 47

 ∀x(Hx → Gx ∨ Fx)
 ∴ ∀x(Gx ∧ Hx → ~Fx)

c. ∃x(Fx ∧ Gx)
 ∃x(Fx ∧ ~Gx)
 ∃x(~Fx ∧ Gx)
 ∴ ∀x(~Fx → Gx)

d. ∀x∃y(Fx ↔ (Gy ∨ Fx))
 ∴ ~∃xFx → ~∃xGx

e. Ha ∧ ~Hb
 ∀x(Fx → Hx ∧ Gx)
 ∃x(Gx ∧ ~Fx)
 ∴ ∃x(Hx ∧ ~Gx)

 CHAPTER 3 RULES

Copyrighted material Chapter Three -- 48

BASIC RULES AND DERIVATION TECHNIQUES FOR CHAPTER 3

 Rule ui: (universal instantiation):

 ∀x ...x...x... ∀x ...x...x...
 ∴ …b…b… ∴ …y…y…

Every occurrence of 'x' that '∀x' was binding must be replaced with the same name or
variable.
A new variable must not be introduced if some of its new occurrences are bound by a
quantifier in the original formula.

 Rule eg (existential generalization):

 ...b...b... ...y...y...
 ∴ ∃x…x…b… ∴ ∃x…x…b…

(You need not replace every occurrence of 'b' or of 'y' by 'x'.)
A new variable must not be introduced if some of its new occurrences are bound by a
quantifier in the original formula.

 Rule ei: (existential instantiation):

 ∃x ...x...x...
 ∴ …y…y…

 You must replace every occurrence of 'x' that '∃x' was binding.
 The variable 'y' must not already occur in the derivation or in a premise cited in
 the derivation..

 Universal derivation:
 If you have a derivation of the following form:

 Show ∀x . . . x . . . x . . .
 :::::
 :::::
 . . . x . . . x . . .

Then if there are no uncancelled show lines in between the first and last lines
displayed, and if 'x' does not occur free anywhere in the derivation before the show
line (or in a premise that has been cited in the derivation), you may box and cancel,
using the notation 'ud'.

 CHAPTER 3 RULES

Copyrighted material Chapter Three -- 49

DERIVED RULES

Rule qn (Quantifier negation)

 ~∀xFx ~∃xFx ∀xFx ∃xFx
 ∴ ∃x~Fx ∴ ∀x~Fx ∴ ~∃x~Fx ∴ ~∀x~Fx

 ~∀x~Fx ~∃x~Fx ∀x~Fx ∃x~Fx
 ∴ ∃xFx ∴ ∀xFx ∴ ~∃xFx ∴ ~∀xFx

Rule av (alphabetic variance)

From a formula of the form '∀x . . . x . . x . . .', where the initial quantifier has scope
over the whole formula, you may infer '∀y . . . y . . y . . .', which is the result of
changing the variable 'x' in the quantifier to another variable, 'y', and changing all
variables inside the first formula that are bound by the initial quantifier to 'y'.

Likewise if the initial quantifier is '∃' instead of '∀'.

Constraint: No capturing is allowed. That is, this inference is not permitted if the new
variable becomes bound by a quantifier inside of the original formula.

 CHAPTER 3 STRATEGIES

Copyrighted material Chapter Three -- 50

STRATEGY HINTS

All of the strategy hints from chapters 1 and 2 still apply. These are new:

To derive: Try this:

Universal Quantification
 ∀x□

Set up a universal derivation. Write a show line containing ∀x□, and
then immediately follow this with a show line containing □. When the
second show is cancelled, use rule ud to cancel the first.

Or write a show line with '∀x□', and then assume '~∀x□' for an indirect
derivation. Turn this into '∃x~□', and proceed from there.

Existential Quantification
 ∃x□

Derive an instance and then use rule eg.

Or write a show line with '∀x□', and then assume '~∀x□' for an indirect
derivation. Turn this into '∃x~□', and proceed from there.

Negation of a Universal
Quantification
 ~∀x□

State a show line with '~∀x□', and then assume '∀x□' for an indirect
derivation.

Or derive '∃x~□' and apply derived rule qn.

Negation of an Existential
Quantification
 ~∃x□

State a show line with '~∃x□', and then assume '∃x□' for an indirect
derivation.

Or derive '∀x~□' and apply derived rule qn.

If you have this available: Try this:

Universal Quantification
 ∀x□

Use rule ui to derive an instance.
(But use rule ei first if that is an option.)

Existential Quantification
 ∃x□

Use rule ei to derive an instance.

Negation of a Universal
Quantification
 ~∀x□

Use derived rule qn to turn this into an existential quantification.

Negation of an Existential
Quantification
 ~∃x□

Use derived rule qn to turn this into a universal quantification.

Use rule av if necessary: If you are having difficulty with capturing when you use rule ui or ei, change
what you are trying to derive to an alphabetic variant. Complete the derivation, and then use derived rule
av to convert this into a derivation of what you are after.

 CHAPTER 3 THEOREMS

Copyrighted material Chapter Three -- 51

CHAPTER 3 THEOREMS

 LAWS OF DISTRIBUTION:

 T201 ∀x(Fx → Gx) → (∀xFx → ∀xGx)
 T202 ∀x(Fx → Gx) → (∃xFx → ∃xGx)
 T207 ∃x(Fx ∨ Gx) ↔ ∃xFx ∨ ∃xGx
 T208 ∀x(Fx ∧ Gx) ↔ ∀xFx ∧ ∀xGx
 T209 ∃x(Fx ∧ Gx) → ∃xFx ∧ ∃xGx
 T210 ∀xFx ∨ ∀xGx → ∀x(Fx ∨ Gx)
 T211 (∃xFx → ∃xGx) → ∃x(Fx → Gx)
 T212 (∀xFx → ∀xGx) → ∃x(Fx → Gx)
 T213 ∀x(Fx ↔ Gx) → (∀xFx ↔ ∀xGx)
 T214 ∀x(Fx ↔ Gx) → (∃xFx ↔ ∃xGx)

 LAWS OF QUANTIFIER NEGATION

 T203 ~∀xFx ↔ ∃x~Fx
 T204 ~∃xFx ↔ ∀x~Fx
 T205 ∀xFx ↔ ~∃x~Fx
 T206 ∃xFx ↔ ~∀x~Fx

 LAWS OF CONFINEMENT

 T215 ∀x(P∧Fx) ↔ P∧∀xFx
 T216 ∃x(P∧Fx) ↔ P∧∃xFx
 T217 ∀x(P∨Fx) ↔ P∨∀xFx
 T218 ∃x(P∨Fx) ↔ P∨∃xFx
 T219 ∀x(P→Fx) ↔ (P→∀xFx)
 T220 ∃x(P→Fx) ↔ (P→∃xFx)
 T221 ∀x(Fx→P) ↔ (∃xFx→P)
 T222 ∃x(Fx→P) ↔ (∀xFx→P)
 T223 ∀x(Fx↔P) → (∀xFx→P)
 T224 ∀x(Fx↔P) → (∃xFx→P)
 T225 (∃xFx↔P) → ∃x(Fx↔P)
 T226 (∀xFx↔P) → ∃x(Fx↔P)

 LAWS OF VACUOUS QUANTIFICATION

 T227 ∀xP ↔ P
 T228 ∃xP ↔ P
 T229 ∃x(∃xFx → Fx)
 T230 ∃x(Fx → ∀xFx)

 LAWS OF ALPHABETIC VARIANCE

 T231 ∀xFx ↔ ∀yFy
 T232 ∃xFx ↔ ∃yFy

 CHAPTER 3 THEOREMS

Copyrighted material Chapter Three -- 52

 OTHER

T233 (Fx→Gx) ∧ (Gx→Hx) → (Fx→Hx)
 T234 ∀x((Fx → Gx) ∧ (Gx → Hx) → (Fx → Hx))
 T235 ∀x(Fx → Gx) ∧ ∀x(Gx → Hx) → ∀x(Fx → Hx)
 T236 ∀x(Fx ↔ Gx) ∧ ∀x(Gx ↔ Hx) → ∀x(Fx ↔ Hx)
 T237 ∀x(Fx → Gx) ∧ ∀x(Fx → Hx) → ∀x(Fx → Gx ∧ Hx)
 T238 ∀xFx → ∃xFx
 T239 ∀xFx ∧ ∃xGx → ∃x(Fx∧Gx)
 T240 ∀x(Fx→Gx) ∧ ∃x(Fx∧Hx) → ∃x(Gx∧Hx)
 T241 ∀x(Fx→Gx∨Hx) → ∀x(Fx →Gx) ∨ ∃x(Fx∧Hx)
 T242 ~∀x(Fx → Gx) ↔ ∃x(Fx ∧ ~Gx)
 T243 ~∃x(Fx ∧ Gx) ↔ ∀x(Fx → ~Gx)
 T244 ~∃xFx → ∀x(Fx→Gx)
 T245 ~∃xFx ↔ ∀x(Fx→Gx) ∧ ∀x(Fx→~Gx)
 T246 ~∃xFx ∧ ~∃xGx → ∀x(Fx↔Gx)
 T247 ∃x(Fx→Gx) ↔ ∃x~Fx ∨ ∃xGx
 T248 ∃xFx ∧ ∃x~Fx ↔ ∀x∃y(Fx ↔ ~Fy)

