The role of between-language interaction in the diagnosis of phonological disorders in bilingual children

Leah Fabiano-Smith
University of Arizona
Speech, Language, and Hearing Sciences
International Child Phonology Conference
St. John’s, Newfoundland, Canada
June 26, 2015

Background

Bilingual Phonological Representation and Production
Processing Rich Information from Multidimensional Interactive Representations (PRIMIR)

- Curtin, Byers-Heinlein, and Werker (2005);
- Fabiano-Smith and Goldstein (2010a; 2010b);
- Fabiano-Smith and Barlow (2010);
- Fabiano-Smith, Shuriff, Barlow, and Goldstein (2014);

Bilingual Phonological Acquisition: Spanish and English

- Studies on typically-developing bilingual preschoolers have found:
 - Production differences by language
 - Production differences on gross vs. discrete measures
 - Variable production across children

- Gildersleeve-Neumann, et al. (2008); Fabiano-Smith and Goldstein (2010a; 2010b); Fabiano-Smith and Barlow (2010); Goldstein, Fabiano, and Washington (2005).

Clinical Issues

- Bilingual children demonstrate lower levels of consonant accuracy at age 3;0 but catch up by age 5;0
- Mean age of referral for children with phonological disorders is 4;3
- 67% of clinicians have reported using informal measures of phonological assessment
- Over half of SLPs report calculating phonological patterns for diagnostic purposes

- Fabiano-Smith and Goldstein (2010b); Goldstein, Fabiano, and Washington (2005); Skahan, Watson, and LoF (2007).

Previous Work

- Inflation of frequency of Stopping of Fricatives
 - As compared to what is expected for English-speaking children on a standardized test
 - English speakers used fricatives as substitutes;
 - Bilingual kids used stops in English
- Spanish stop-spirant alternation is not stable in bilingual children
- Influence of Spanish on English

- Fabiano-Smith, Ogilvie, Maiefski, and Schertz (2015); Fabiano-Smith (2010).
Research Questions

- Can we extend the PRIMIR model to account for production in bilingual children?
- Can we predict where between-language interaction will occur in production based on the structure of English and Spanish?
- Can we predict where and when between-language interaction will occur based on how the two systems are organized?

Sutherland & Gillon, 2005

Current Study

Initial Consonant Deletion

- The first sound in a word is perceived by listeners as its own, unique sound
- Initial sounds in words are easily identifiable visually
- Often simplistic sounds
- Therefore, children should quickly acquire initial consonants

Bauman-Wangler, 2000; Rieben & Perfetti, 1991; Fougeron & Keating, 1997; Barlow, 2005; Faingold, 1990

Past Studies and Clinical Observations

- Low, but consistent, occurrence of initial consonant deletion in the speech of Spanish-speakers
- Considered disordered if observed by SLPs
- Are we observing initial consonant deletion or initial syllable deletion? Cluster reduction?

Gildersleeve, Davis, and Stubbe (1996); Wing and Flipsen (2010); Goldbarn (2005); Anderson (1987); Paden and Moss (1985)

Theoretical Possibilities

- Prosodic structure account
 - Productions will conform to one trochaic foot; variation in truncation
- Trochaic constraint
 - Initial weak syllable will be deleted
- Perceptual salience
 - Stressed, word-final syllables will be preserved

Segmental Influence

- Word-internal unstressed syllables with sonorant onsets are vulnerable to deletion
 - /n/, /l/
- Word-internal unstressed syllables with an obstruent onset are likely to be preserved
 - /p/, /k/
- Does this hold for word-initial syllables as well?

Kehoe (1995)
Cross-Linguistic Considerations

- Developmental differences between English and Spanish
- English speakers acquire stress earlier than Spanish speakers; avoid final syllable for stress placement
- Spanish speakers progress to foot plus unfooted syllable structure sooner

Hochberg (1986; 1987a; 1987b; 1988); Pons and Bosch, (2010); Allen and Hawkins, (1980); Lleó and Demuth (2000)

Cross-Linguistic Considerations

- Spanish and English both have trochaic stress
- Spanish is syllable-timed, while English is stressed-timed
- In West Germanic languages, children’s productions are faithful to the initial consonant in a syllable
- Spanish does not have reduced vowels
- Unstressed syllables have non-reduced vowels
- English-speaking children tend to delete initial syllables when they contain a reduced vowel
- Spanish has more complex word shapes than English
- More multi-syllabic words

Kehoe (2001); Demuth (2000); Rose (2002); Goad and Rose (2002) Gennari and Demuth (1997); Lleó and Demuth (1999); Roark and Demuth (2000)

Research Questions

- Do typical Spanish-speaking preschoolers omit initial consonants more often than bilingual Spanish-English speakers?
- Are children omitting initial consonants or initial syllables? Are we simply observing cluster reduction?

Methods

Participants

- 8 bilingual Spanish-English speaking children, mean age 4;0
- Children were recorded in San Diego, CA and Tucson, AZ
- Speakers of Mexican Spanish
- At least 20% input in both Spanish and English
- 9 monolingual Spanish-speaking children, mean age 3;5
- Recorded in Querétaro, Mexico
- No input in any other language but Spanish
- Mann-Whitney U showed no significant difference between language groups on age (p = .059)

Pearson, Fernández, Leeuward, and Offer (1997)

Data Collection

- Spanish single word speech samples were recorded using the Assessment of Spanish Phonology (ASP) and the Bilingual English-Spanish Assessment (BESA)
- Target items reflect the type and frequency of sounds, syllable types, and clusters in Spanish and English, respectively
 - ASP: 25-60 items BESA: 30 items
- Previous work has not found a difference in child performance on the two probes, thus data were aggregated

ASP: Barlow (2003); BESA: Peña, Gutierrez-Clellen, Iglesias, Goldstein, & Bedore (2013); Reiden & Fabiano-Smith (2012)
Analyses

- Speech samples were phonetically transcribed
- Undergraduate and graduate students trained in narrow IPA
- Native Spanish speakers
- Inter- and intra-rater reliability greater than 90% for all samples
- Logical International Phonetics Program (LIPP)

Statistical Analyses

- Mann-Whitney U test
- Compared the percent occurrence of initial consonant deletion in the productions of monolingual Spanish speakers with the Spanish productions of bilingual children

Results

Initial Consonant Deletion: Group Comparison

- Monolingual Spanish speaking children were omitting initial consonants at a higher frequency than bilingual children ($p = .046$)

Types and Tokens of Errors

- Number of Tokens

Fabiano-Smith and Cuzner (in preparation)
Segmental vs. Syllabic Deletion

ICD vs. Cluster Reduction

Context of Deleted Segment: Stressed or Unstressed Syllable

Segmental Effects in Word-Initial, Unstressed Syllables

Percentage of Productions Conforming to One Trochaic Foot

Common Target Word Triggers

<table>
<thead>
<tr>
<th>Gloss</th>
<th>Production</th>
<th>Language Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>rompuchezas</td>
<td>rompachezas / rompach/ac</td>
<td>Monolingual</td>
</tr>
<tr>
<td>leja / leuca / lea</td>
<td>lej/leu/ac</td>
<td>Monolingual</td>
</tr>
<tr>
<td>roñila / roñila / rea</td>
<td>roñal / [roñal]</td>
<td>Monolingual</td>
</tr>
<tr>
<td>pintura / pintura / pintura</td>
<td>pintura / pintura</td>
<td>Bilingual</td>
</tr>
<tr>
<td>guitara / gitara / guitar</td>
<td>guitara / gitara</td>
<td>Monolingual</td>
</tr>
</tbody>
</table>
Interesting Patterns

- One bilingual child inserted the glottal stop in initial position across words
 - e.g., humo, sombrero, llueve, castillo
- Initial cluster reduction was common
 - “clavo” (nail) /klaβo/ [laβo]
 - “flor” (flower) /floɾ/ [hoː], [loɾ]
- M03 demonstrated a higher percent occurrence of ICD than any other child in the group
- Reducing clusters and omitting initial consonants

Summary

<table>
<thead>
<tr>
<th></th>
<th>Bilinguals</th>
<th>Monolinguals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent Occurrence ICD</td>
<td></td>
<td>🡯</td>
</tr>
<tr>
<td>Initial Segment Deletion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cluster Reduction</td>
<td></td>
<td>🡯</td>
</tr>
<tr>
<td>Initial Syllable Deletion</td>
<td></td>
<td>🡯</td>
</tr>
<tr>
<td>Initial Cluster Deletion</td>
<td></td>
<td>🡯</td>
</tr>
<tr>
<td>Unstressed Context</td>
<td></td>
<td>🡯</td>
</tr>
<tr>
<td>Sonorant/Obstruent Rule?</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Reduced to Trochee?</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Discussion:

Discussion: Similarities

- Both groups followed some typical developmental patterns for Spanish speakers:
 - Produced tri-syllabic words without truncation
 - Reduced 4-5 syllabic words to 3 syllable words
 - Both used eponthesis
 - “pirata” /piɾaɾa/ [piɾaɾa] (bilingual)
 - “bruja” /bɾuɾa/ [bɾua] (monolingual)
- All children were well beyond the 1-foot developmental level

Discussion: Differences

- Initial consonant deletion was more widespread in the monolingual group
- Monolinguals reduced more initial clusters than bilinguals
- Monolinguals followed the sonorant/obstruent rule
- Bilinguals reduced segments in unstressed syllable contexts

Discussion: Differences

- Bilinguals are omitting less initial segments and cluster members
- Bilinguals are demonstrating knowledge of stress and omission rules
- Bilinguals are maintaining the production of multi-syllabic words
- Bilinguals are not demonstrating the same error pattern on obstruent/sonorant omission

Lleó and Demuth (1996)
Discussion

- On this particular measure, we could be observing a possible acceleration effect, interference, and transfer (PRIMIR 2)
- English speakers acquire stress earlier than Spanish speakers
- Facilitative
- English speakers tend to delete initial syllables when they contain a reduced vowel
- Transfer/Interference
- Bilinguals still producing multisyllabic words
- No effect

Conclusion

- Between-language interaction at the representational level presents itself at the production level in a bi-directional fashion
- Facilitation, interference, or no effect are all possibilities
- Result is difference, not evidence of disorder
- Structural knowledge of the two languages aids in predicting the type and frequency of between-language interaction
- Aids in accurate diagnosis of phonological disorders

Future Directions

- Acoustic analysis for initial glottal stop
- Analysis of English for cross-linguistic comparison
- Large-scale normative data for bilingual children are essential for bilingual children; larger, more inclusive set of phonological error patterns

Acknowledgements

- The Center for Research in Language (CRL) at the University of California San Diego (NIH Postdoctoral Training Grant S-5-T32-DC00110), Marta Kutas, P.I. in conjunction with Dr. Jessica Barlow and the School of Speech, Language, and Hearing Sciences at San Diego State University
- National Institutes of Health (NIH) Division of Health Disparities Loan Repayment Program (L60 MD006256)
- The University of Arizona Foundation and the Office of the Vice President for Research, Graduate Studies, and Economic Development Faculty Seed Grant Program: Initial Consonant Deletion in Spanish-Speaking Children: Typical or Disorder? Leah Fabiano-Smith, P.I.
- NIH National Institute on Deafness and Other Communication Disorders (NIDCD) (Doctoral Training Grant 7-32-DC00988) and the National Science Foundation (NSF) [DBI-0548130] for support of Trianna Oglvie, doctoral student
- Chelsea Bayley, Afrokole Thomas, Victoria Gullet, and Shawnesha Wallace at the University of Arizona in the Department of Speech, Language, and Hearing Sciences for help with data transcription and analysis