

Arts & Humanities Research Council

Pre-schoolers' categorisation of speakers by phonological variables

Ella Jeffries, Paul Foulkes & Carmen Llamas Department of Language and Linguistic Science University of York erwj500@york.ac.uk

How is this ability impacted by the child's **Age** and **Sex** and the linguistic **Input** they receive?

 Adults can group speakers into broad perceptual regional accent categories
 Millians et al (1999) Classes & Biaggi (2004, 2007)

→ Williams et al. (1999), Clopper & Pisoni (2004, 2007)

- The age at which children can use regional accent features in order to group speakers and how this develops is not clearly understood
 - 7-year-olds (Floccia et al. 2009)
 - 5-year-olds (Beck 2014)
- Categorising speakers by regional accent is a **life-long** skill
- But is there any evidence of this ability emerging in preschool children?

Background

- Previous studies have uncovered the development of sociolinguistic skills in the pre-school years
- Linguistic input important
- Children learn community norms of pronunciation
 →Roberts & Labov (1995), Foulkes et al. (1999)
- Children's preference for **standard variables** is related to their exposure to standard forms
 - \rightarrow Smith et al. (2007), Barbu et al. (2013)

Background

- **Usage-based** theories of language acquisition best describe the importance of input
- Other theoretical models don't show how **the indexical meaning** of sociophonetic variability is learned (cf. Foulkes and Docherty 2006)
 - Storing of specific linguistic units (cf. Tomasello 2003)
 - Frequency of encounters aids acquisition (cf. Chevrot et al. 2009)
 - Exemplars of individual talker differences → broader groups based on these differences (cf. Foulkes & Hay 2015)

- More transparent categories easier to learn – direct exposure important (cf. Foulkes and Docherty 2006)

Research questions

- (1) To what extent can 3-4 year-olds group speakers by **phonetic variants** indexing **regional accents?**
- (2) To what extent does their ability in (1) vary with age, sex and input from different regional accents?
 - Age: Improvement through pre-school years?
 - **Sex:** Difference between boys and girls?
 - Input: Those who have parents from outside the local area (and are therefore exposed to a wider variety of accents at home) better in this ability?

Methodology

Participants

- 20 pre-school children in York (+ 4 discarded)
- 12 girls, 8 boys
- Aged 3.1 years to 4.6 years

Experiment

- Sentences
- Two regional accents
- Single speaker
- Run on laptop in quiet corner of nursery or home

Difficulty level 2: Same phoneme

Daughters: grass [a]/[a:]

Mothers: path [a]/[a:]

Difficulty level 3: Different phoneme

Daughters: cake [e:]/[eI]

Mothers: *after* [a]/[a:]

Results for each DL

Age group and DL

Input (Yorkshire parents) and DL

Results: statistical analysis

- Stepwise backward regression method in binary, mixed effects logistic models, run in R
- Three binary independent variables
 - Age: 3 or 4
 - **Sex:** F or M
 - Input: I + Yorkshire parent or no Yorkshire parent
 - default: 3-year-old girl with no Yorkshire parent(s)
- Two-way interactions: Age*Sex, Age*Input
- Random effect: individual child
- Separate models for DLI, DL2 & DL3

Logistic mixed effects model: Same word (DLI) results

- Two significant main effects Age, Sex
- No significant **interactions**

Factor	Estimate	Std. Error	Z	Pr(> z)	Sig
(Intercept)	0.78	0.25	3.16	0.002	**
Four-Year-Old	0.52	0.27	1.94	0.05	*
Male	-0.54	0.27	-2.05	0.04	*
With Yorkshire Parent(s)	-0.43	0.25	-1.68	0.09	

Same word (DLI) results: Age

Same word (DLI) results: Sex

Logistic mixed effects model: Same phoneme (DL2) results

- One significant main effect Age
- No significant **interactions**

Factor	Estimate	Std. Error	Z	Pr(> z)	Sig
(Intercept)	0.26	0.53	0.50	0.62	
Four-Year-Old	1.31	0.55	2.36	0.02	*
Male	-0.53	0.50	-1.06	0.29	
With Yorkshire Parent(s)	-0.44	0.46	-0.96	0.34	

Same phoneme (DL2) results

Logistic mixed effects model: Different phoneme (DL3) results

- One significant **main effect** Yorkshire parents
- No significant **interactions**

Factor	Estimate	Std. Error	Z	Pr(> z)	Sig
(Intercept)	1.61	0.45	3.58	0.0004	***
With Yorkshire Parent(s)	-1.6	0.54	-3.0	0.003	**

Different phoneme (DL3) results

Summary

 Pre-school children score above chance level in the ability to group together speakers based on regionally distributed phonetic variants

- Same word	Easier
- Same phoneme	
- Different phoneme	↓ Harder

• But with significant effects of Age, Sex and Input

Discussion: Age

- Age improvement between 3 and 4 years
 - Younger age group than previously investigated
 - In line with other sociolinguistic developments and indexical learning
 - accent aids 2-4-year-olds in the recognition of familiar speakers, ability improved with age (Jeffries, in press)
- Most robust for **DL 2** (same phoneme condition)
 - Shows development in the understanding of a phoneme category and its variable realisations

Discussion: Sex

• Sex: girls outperform boys

- Girls better at tasks requiring phonological and semantic information in long-term memory and perceptual speed (Sternberg 2004, Halpern 1997)
- Only significant for **DLI** (same word condition)
 - Boys needed longer to understand the task?
 - But also a much larger range of results for the boys in DL3
 individual variation

Discussion: Input

- Input: children with parents from outside of Yorkshire perform better in DL3 (different phoneme condition)
- Exposure to speakers with different accents at home helps in the forming of categories based on regionally distributed phonetic variants
- Predicted by **Usage-based** models
 - Exposure to multiple accents generates more robust categories

(cf. Logan et al. 1991: multiple speakers leads to more robust categories in L2 learning)

Conclusion

- Development between the ages of 3 and 4 in children's ability to group speakers according to regionally distributed features of pronunciation
- Varied input helps in the creation of more robust categories
- Supports a usage-based model of language acquisition in which speaker categories are based on experienced exemplars

Thanks for listening!

Ella Jeffries, Paul Foulkes, Carmen Llamas Department of Language and Linguistic Science University of York erwj500@york.ac.uk

- BARBU, S., NARDY, A., CHEVROT, J.P. & JUHEL, J. (2013). Language evaluation and use during early childhood: Adhesion to social norms or integration of environmental regularities?. *Linguistics*, 51(2): 381-411.
- **BECK, E.L. (2014).** The Role of Socio-indexical Information in Regional Accent Perception by Five to Seven Year Old Children. Unpublished PhD dissertation: University of Michigan.
- CHEVROT, J.P., DUGUA, C. & FAYOL, M. (2009). Liaison acquisition, word segmentation and construction in French: a usage-based account. *Journal of Child Language*, 36(03): 557-596.
- CLOPPER, C.G. & PISONI, D. B. (2004). Some acoustic cues for the perceptual categorization of American English regional accents. *Journal of Phonetics*, 32: 111–140.

- CLOPPER, C.G. & PISONI, D.B. (2007). Free classification of regional accents of American English. *Journal of Phonetics*, 35: 421–438.
- FLOCCIA, C., BUTLER, J., GIRARD, F., & GOSLIN, J. (2009). Categorization of regional and foreign accent in 5-to 7-year-old British children. International Journal of Behavioral Development, 33(4): 366-375.
- FOULKES, P. & DOCHERTY, G.J. (2006). The social life of phonetics and phonology. *Journal of Phonetics* 34: 409-438.
- FOULKES, P., DOCHERTY, G.J. & WATT, D. (1999). Tracking the emergence of sociophonetic variation in 2 to 4 year olds. Proceedings of the 14th ICPhS, 1625-1628. University of California, Berkeley.
- FOULKES, P. & HAY, J. (2015). The emergence of sociophonetic structure. In B. MacWhinney & W. O'Grady (eds.) The Handbook of Language Emergence (pp. 292-313). Oxford: Blackwell.

- HALPERN, D.F. (1997). Sex differences in intelligence: Implications for education. American Psychologist, 52: 1091-1102
- HUGHES, A., TRUDGILL, P., & WATT, D. (2012). English accents and accents: An introduction to social and regional varieties of English in the British Isles. 5th ed. Routledge.
- JEFFRIES, E. (in press, due 2015). Pre-school children's identification of familiar speakers and the role of accent features. York Working Papers in Linguistics 14.
- LOGAN, J.S., LIVELY, S.E. & PISONI, D.B. (1991). Training Japanese listeners to identify English/r/and/l: A first report. The Journal of the Acoustical Society of America, 89(2): 874-886.
- R CORE TEAM (2013). R:A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/

- ROBERTS, J. & LABOV, W. (1995). Learning to talk Philadelphian: Acquisition of short a by preschool children. Language Variation and Change, 7(01): 101-112.
- SMITH, J., DURHAM, M. & FORTUNE, L. (2007). "Mam, my trousers is fa'in doon!": Community, caregiver, and child in the acquisition of variation in a Scottish accent. *Language Variation and Change*, 19(01): 63-99.
- STERNBERG, R.J. (2004). 'Individual Differences' in U. Goswami (ed.) Blackwell Handbook of Childhood Cognitive Development (pp.600-619). Oxford: Blackwell.
- **TOMASELLO, M.** (2003). Constructing a language: A usage-based theory of language acquisition: Harvard University Press.
- WILLIAMS, A., GARRETT, P. & COUPLAND, N. (1999). accent recognition. In D. R. Preston (ed.). *Handbook of Perceptual accentology* (pp. 345–58). Philadelphia: John Benjamins.

Appendices

Methodology

- Positioning of mummy bears/mothers and baby bears/daughters randomised
- 8 sets of stimuli featuring [a]/[aː] and [e:]/ [eɪ]
 → 2 for DL1, 4 for DL2, 2 for DL3
- 20 children completed DL1
- 15 children completed DL2 and DL3

Children's details

	Sex	Age	Yorkshire parents	DLs
	F	4.38	0	1, 2, 3
	F	4.41	0	1, 2, 3
	F	3.7	I	1, 2, 3
	Μ	3.11	I	1, 2, 3
	F	3.07	2	I, 2, 3
	F	4.52	0	I, 2, 3
	Μ	4.27	I	1, 2, 3
	F	3.61	I	I, 2, 3
	Μ	3.54	0	I
	F	3.38	I	I
	F	3.37	0	I
	F	3.59	2	I, 2, 3
	F	3.56	0	I, 2, 3
	Μ	3.2	0	I
	Μ	4.5	0	I
	F	4.44		I, 2, 3
	Μ	4.41	2	I, 2, 3
	F	4.64	2	I, 2, 3
	Μ	4.2	0	1, 2, 3
	Μ	4.59	1	I, 2, 3
Totals	12 F, 7 M	10 4yo, 10 3yo	10 with YP , 9 without	15 all DLS, 5 just DLI

Results

Age divide between
 3-year-olds and
 4-year-olds for
 results from all
 difficulty levels

Logistic mixed effects model: All results

- One significant main effect
- One significant interaction

Factor	Estimate	Std. Error	z value	Pr(> z)	Sig
(Intercept)	0.45	0.18	2.48	0.01	*
Four-Year-Old	1.27	0.25	5.19	2.14e-07	***
Male	0.19	-0.26	0.71	0.48	
With Yorkshire Parent(s)	-0.34	0.17	-2.0	0.05	*
Four-Year-Old:Male	-1.14	0.37	-3.09	0.002	**

All results : Yorkshire parents

DL3: Southern parents

Key

at least one Yorkshire parent

- no Yorkshire parents
- no Yorkshire parents, one Southern parent

