

International co-operation in higher education and training

Mispronunciation detection with pupillometry: A window to study lexical representations

Katalin Tamási, Cristina McKean, Adamantios Gafos, & Barbara Höhle

International Doctorate Experimental Approaches to Language and the Brain (IDEALAB), Universities of Potsdam, Newcastle, Groningen, Trento and Macquarie University (Sydney)

How detailed are early words?

Infants:

Excellent discriminators of phonetic detail

Jusczyk & Aslin (1995), Werker & Tees (1984)

Ability to form phonetic categories

Hochmann & Papeo (2014)

• Performance in discrimination > word learning

Stager & Werker (1997)

 \rightarrow What details are stored in the early mental lexicon?

Fikkert (2010), Pater, Stager & Werker (2004)

Assessing lexical development

- I. Production studies
 - Spontaneous speech: consonant harmonies, assimilations

Ferguson & Farwell (1975)

Elicitation tasks: strong lexical effects

Storkel (2002)

• Metalinguistic tasks: inability to manipulate phonemes

Treiman & Baron (1981; 1983)

Limitation:

Motor immaturity or genuine representational deficit?

McLeod, Doorn, & Reed, (2001)

Assessing lexical development

II. Perception studies: e.g., mispronunciation detection

- 14 month-olds
 - PoA change (e.g., bin din)

Jusczyk & Aslin (1995); Yoshida, Fennell, Swingley, & Werker (2009)

- 19 month-olds
 - Voicing change (e.g., *dog tog*)
 - MoA change (e.g., *bird vird*)
 - Height and backness change (e.g., bed-bid, brush-brash)

Swingley & Aslin, (2000; 2002); White & Morgan (2008); Mani, Coleman, & Plunkett (2008)

Assessing lexical development

Detecting mispronunciation:

 \rightarrow Early words contain sub-phonemic information

Assessing lexical development

Detecting degrees of mispronunciation

White & Morgan (2008), Mani, Coleman, & Plunkett (2008)

- \rightarrow Sensitivity to featural distance
- \rightarrow Lexical representations: contain featural information

Tobii T1750 eye tracker: Detecting changes in pupil dilation

A tool for mispronunciation detection

Fritzsche & Höhle, (2015); Hochmann & Papeo (2014)

 Proxy of cognitive effort (surprising / unexpected / incongruous stimuli)

Kahnemann, (1973); Karatekin (2007)

• Prediction: sensitivity to the degree of featural distance

48 children (5 excluded due to insufficient data)

- Mean age: 30 months (*SD 0.57*)
- Monolingual German background
- Familiarity with experimental words:
 - 82.1 % (SD 14.6)
- Vocabulary size (max. 600 words):
 - 410 words (SD 112)

20 words chosen from the German CDI

Szagun, Stumper, & Schramm (2009)

- Part of productive vocabulary of children at 30 months
- CVC and CVCV items, diverse featural makeup
- Word frequency, positional biphone probability, & neighborhood density info collected from Clearpond

Marian, Bartolotti, Chabal, & Shook (2012)

Produced & recorded by a native German speaker

- Four-way: number of feature changes (0, 1, 2, 3)
- Counterbalanced for feature types (PoA, MoA, V)

Correct	$\Delta 1F$	Δ2F	Δ3F
/k/amm (<i>comb</i>)	/p/	/f/	/v/
/z/onne (<i>sun</i>)	/d/	/f/	/p/

Block structure

- four versions
- 5 x 4 blocks = 20 trials
- semi-randomized order
- between-block attention getters

Trial structure

Time (ms)

Afterwards: parental questionnaire

Semantic integration: more complex with mispronounced words

- \rightarrow more cognitive effort
- \rightarrow larger degree of pupil dilation

Pupil dilation reflects:

- Effect of mispronunciation \rightarrow
- Effect of featural distance \rightarrow

Exploratory analysis

Fixed effects:

- Featural distance
- Lexical factors: familiarity, word frequency, positional biphone probability, neighborhood density

Random effects:

- Participants (N = 43) (featural distance in random slope)
- Items (*N* = 20)

Outcome measures:

- Mean pupil dilation
- Maximum pupil dilation

Featural distance

Mean pupil dilation

Maximum pupil dilation

Featural distance

Pupillometry registers differential response to

- Mispronunciation
- Featural distance
- \rightarrow Viable method in child language research
- 2 Detecting mispronunciations
 - Lexical representations contain sub-phonemic information
- Oetecting degrees of mispronunciations
 - Suggests sensitivity to featural distance
 - \rightarrow Lexical representations contain featural information

Future research

- Abstractness in lexical representations
 - Discounting acoustic / perceptual similarity
 - Effect of type & direction of feature change
 - Possible interactions between features
- Extending the paradigm to...
 - other languages
 - bilinguals
 - adults
- Methodological considerations: dependent measure?
- Impact of lexical factors

Acknowledgements

Babylab personnel: Tom Fritzsche Katja Schneller Carolin Jaekel Steffi Meister Maike Riegel

And, of course: The participants and their families

This research was supported by grant Erasmus Mundus EMJD 520101-1-2011-1-DE-ERA.

Questions

Any questions regarding ...?

What about lexical effects such as ...?

White & Morgan (2008)

19 month-olds are differentially sensitive to the number of feature changes in the onset

- Preferential looking paradigm: target + distractor image
 - Novel approach: distractor is an unfamiliar object, more likely to be a possible match with the mispronounced label
 - Auditory stimuli: Where is the X? Find the X!
 - Dependent measure: looking time at the target object

Critical manipulation White & Morgan (2008)

- Onset features: PoA, MoA, Voicing
- Number of features changed: 1, 2, 3
 - Δ 1F: PoA ({keys} \rightarrow {teys})
 - △ 2F: PoA + Voicing ({keys} → {deys})
 - Δ 3F: PoA + Voicing + MoA ({keys} \rightarrow {zeys})

Results White & Morgan (2008)

Fig. 2. Proportional looking times and standard errors, Experiment 1. Condition is represented on the x-axis. The y-axis represents the difference between proportion looking at the familiar object in the test phase and proportion looking at the familiar object in the salience phase.

Possible limitations

Preferential looking paradigm

- Indirect measure
- Potential confound with distractor (even with unknown label)
- 2 Stimuli set
 - Predominance of labials, especially of {b}
 - Unbalanced for type of feature change

Pupillometry

Tobii T1750 eye tracker

• Detecting changes in pupil dilation

Why use pupillometry?

- Easy to administer
- Inexpensive and easy to learn
- Simpler design

Exploratory analysis

Transformation, exclusion criteria

- Linear interpolation of blinks (no longer than 400 ms)
- Averaging left and right pupil values
- Successful trials = more than 50% pupil data
- 43/48 children: more than 50% successful trials

Exploratory analysis

Potential outcome measures (per trial):

- Mean pupil dilation (mm) (baseline corr.: 100 ms pre-onset)
- Peak dilation of smooth spline (mm)
- Latency to peak dilation
- Peak velocity of smooth spline (mm/ms)
- Latency to peak velocity
- Wavelet basis function

Exploratory analysis

Pupil dilation over time in a representative trial

Statistical model, mean pupil dilation

	Coefficients (SD)
(Intercept)	0 .24(0.02)***
cond1_vs_234 (Effect of mispronunciation)	0.04 (0.02)*
cond2_vs_34 (Effect of featural distance)	0.05 (0.02)*
c.PTAF (Neighborhood density)	-0.02(0.01)
c.PBPP (Positional biphone frequency)	0.01(0.01)
c.LOGFREQ (Logged frequency)	-0.02(0.01)
c.PTAF:cond1_vs_234	0 .02(0.00)***
c.PTAF:cond2_vs_34	0.01 (0.00)***
c.PBPP:cond1_vs_234	- 0.03 (0.00)***
c.PBPP:cond2_vs_34	- 0.04 (0.00)***
c.LOGFREQ:cond1_vs_234	0.04 (0.00)***
c.LOGFREQ:cond2_vs_34	- 0 .07(0.00)***

 $^{***}p < 0.001,\,^{**}p < 0.01,\,^{*}p < 0.05$

Statistical model, maximum pupil dilation

	Coefficients (SD)
(Intercept)	0 . 42 (0.03)***
cond1_vs_234 (Effect of mispronunciation)	0.03 (0.02) [.]
cond2_vs_34 (Effect of featural distance)	0 .05(0.03) [.]
c.PTAF (Neighborhood density)	-0.02(0.02)
c.PBPP (Positional biphone frequency)	0.01(0.01)
c.LOGFREQ (Logged frequency)	-0.01(0.02)
c.PTAF:cond1_vs_234	-0.00(0.00)
c.PTAF:cond2_vs_34	0 .02(0.00)***
c.PBPP:cond1_vs_234	- 0.04 (0.00)***
c.PBPP:cond2_vs_34	- 0 .03(0.00)***
c.LOGFREQ:cond1_vs_234	0.04 (0.00)***
c.LOGFREQ:cond2_vs_34	- 0 .07(0.00)***

****p < 0.001, **p < 0.01, *p < 0.05

Lexical effects hypotheses, children

More cognitive effort required (as indicated by larger pupil dilation):

- Unknown words
- Low-frequency words

Goodman, Dale, & Li (2008)

Words with higher positional biphone probability

Hoover, Storkel, & Hogan (2010)

• Words in sparser lexical neighborhoods

Hollich, Jusczyk, & Luce (2002)

Familiarity

Word frequency (only familiar words)

Positional biphone probability (only familiar words)

Neighborhood density (only familiar words)

Featural distance, adults

Mean pupil dilation

Maximum pupil dilation

Featural distance, adults

Word frequency, adults

Positional biphone probability, adults

Neighborhood density, adults

Denser neighborhood 0.5 0.4 Corrected pupil size (mm) 0.3 Condition - Correct 1F change 2F change 3F change 0.2 0.1 0.0 1000 2000 3000 Ó Time (ms)

Lexical effects (only correct words)

Lexical effects - only correct words

