ECONOMICS 6002 CLASSES 1-2 THE CLASSICAL LINEAR REGRESSION MODEL AND ORDINARY LEAST SQUARES

- 1. The Classical Linear Regression model
 - a. Notation
 - i. Dependent variable y Nx1 vector
 - ii. Independent variables **X** NxK matrix
 - (1) Treatment of constant term
 - iii. Stochastic disturbance ε Nx1 vector
 - b. Assumptions
 - i. Linearity: $y=X\beta+\epsilon$
 - ii. X has rank K
 - iii. ϵ is a random variable identically and independently distributed with mean 0 and finite variance.
 - iv. X is exogenous $\Rightarrow E[X'\epsilon]=0$.
- 2. The Ordinary Least Squares Estimator $\beta^{OLS} = (X'X)^{-1}X'y$
- 3. Motivation for OLS
 - a. Best fit minimizes Mean Squared Error
 - b. Implies $E[X\epsilon]=0$ (errors orthogonal to regressors)
 - c. OLS is Best Linear Unbiased Estimator (BLUE) Gauss-Markov Theorem
- 4. Stochastic properties of OLS Estimator
 - a. β^{OLS} is a random variable, with a sampling distribution.
 - i. Sampling distributions and Monte Carlo analysis
 - b. Under CLRM, β^{OLS} is unbiased: E[β^{OLS}]= β .
 - c. Under CLRM, β^{OLS} is **best linear** unbiased efficiency property.
 - d. Under CLRM, β^{OLS} is **best** unbiased if ε is normally distributed.
- 5. Large Sample Properties of Ordinary Least Squares
 - a. Why should we be concerned with asymptotic properties?
 - b. Consistency and the Law of Large Numbers
 - c. Asymptotic normality and the Central Limit Theorem
 - d. Asymptotic efficiency