ECONOMICS 6002 CLASSES 3-4 BASIC STATISTICAL INFERENCE UNDER ORDINARY LEAST SQUARES

1. Testing a hypothesis about a coefficient - the *t* test

a.

- Testing statistical significance: $H_0: \beta=0$
 - i. Role of the normality assumption
 - ii. Distribution of the *t*-statistic
- b. Testing hypotheses on coefficients $H_0: \beta=c$
- c. Testing linear combinations of coefficients . H_0 : $r'\beta = q$
- d. Estimating the variances and covariances of OLS estimates
 - i. $cov(\beta) = \sigma^2 (X'X)^{-1}$
 - ii. Estimating σ^2
- 2. Testing joint hypotheses: e.g. H_0 : { $\beta_1 = 0$, $\beta_2 = 0$ } the *F* test
 - a. Motivation: estimates of β_1 and β_2 can be correlated
 - b. Distribution of the *F*-statistic
 - c. General form: H_0 : $R'\beta = q$, R JxK
 - d. The F test is a test on $[SSE_R SSE_U]$ R=restricted, U=unrestricted
- 3. Testing non-linear hypotheses the Wald test W
 - a. *t* and *F* tests cannot test *non-linear* hypotheses not normally distributed
 - b. W can be used to test *non-linear* hypotheses
 - i. Relies on consistency and the Central Limit Theorem, so is only an **asymptotic** test
 - ii. Estimation of the asymptotic variance of a non-linear function
 - c. W can best both simple and joint hypotheses
 - d. W is distributed (asymptotically) as chi-squared
 - e. W is valid (asymptotically) even when disturbances are **not** normally distributed

Updated September 10, 2008