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Abstract. Since the collapse of the Newfoundland groundfishery in 1992, the snow crab fishery has become
Newfoundland' s largest fishery, accounting for approximately half the value of total landings. Thisstudy usestrip
log data to estimate the production frontier and the technical efficiency of this fishery using a Stachastic Frontier
Analysis(SFA) methodology. The analysisisbased on over 11,000 observationstaken over afive-year period. The
technical efficiency of the fishery is estimated to be at alevel of fifty percent or less.
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1. INTRODUCTION

Thecollapseof the groundfish fishery in Nenfoundland beginning in 1992 iswell known (see, for example, Gordon
and Munro, 1996; Roy, 1996, Ruitenbeek, 1996; Schrank, 1995). Themost recent stock gatusrepart on Narthern
cod by Canadian fisheries scientistshas cond uded that the stock continuesto decline despitethe virtually complete
closure of the fishery (Fisheries and Oceans Canada, 2002).

Notwithstanding the collgpsein groundfish stocks, shel lfish catches have more than offset thenear-d osure of the
groundfishery. Whiletotd landings in Nenfoundland valued $262 million in the year before the cad moratorium
wasinstituted (1991), they had increased to $587 milli on by 2000. Almost all of this inaeasewasin shellfish,
predominantly crab and shrimp.

However, these fisheries are not performing the economic role that cod used to play in the rural economy of
Newfoundland. Neither harvesting nor processing of shellfish isas labour-i ntensive asthat of groundfish, and so
employment in theindustry is still low compared to pre-moratorium levels. Nonetheless, many former cad fishers
have been able to use exiging and newly issued crab and shrimp li censes to replace the revenues that groundfish
previouslygener ated. Asaresult, landingsof snow crab ( Chionecetes opilio) increased from 16,441 tonnesin 1992
to 69,121 tonnesin 1999. Shrimp landings show a similar increase.

Theradical change intheoperati ng circumstan ces of thisrelatively homogeneousfishery providesabasison which
theimpact of this major expansion on the economic productivity of thefishery can be assessed. Accardingly, this
paper utilizestrip log data on crab catches over the period 1993- 1997 to estimate a frontier productivity model of
the crab fishery. These data are utilized to estimate atechnically-effici ent production frontier for thisfishery, and
to estimatemeasuresof thetechnical €fidency of firmsexploiting thisfishery. It isclearly of interest to establish
whether technical dfidency varies systematically with characteristics of the firm, and an attempt is made to
determine whether thisisthe case.

TheNewfoundland snow crabfisheryisdescribed in the next section, while the stochastic frontier modd is briefly
outlined in Sedion 3. The next three sections present three empirical anayses of the snow crab fishery that are
based on the stachastic frontier modd. Section 4 estimates the production frontier and the assodated technical
inefficiencies of the obser ved datausing across-section ana ysis of the trip logdata. Section 5 groupsthetrip data
by vessel in order to estimate a panel model of the praduction frontie; herethe technical efficiency of each vessel
is assumed to remain gable through the sample. Finally, Section 6 examines the posdbility that the technical
efficiency of avessd may be rdatedto certain characteistics. Section 7 concludes thepaper.



2. THE NEWFOUNDLAND SNOW CRAB FISHERY

Snow crabaredistributed widelyove theNorthwest Atlantic from Greenland to theGulf of Maine. Total Allowable
Catches areset for three distinct areas off Newfoundland and Labrador, carresponding roughly tothe Northeast,
South, and West coasts. Only males with carapacelength in excess o 95 mm may legally be caught.

Thefishery initially began in 1968in inshore waters as gillnet bycatch. However, within several yearsadirected
trap (“pot”) fishery had become established along the northeast coast of the idand. As catches declined in these
traditional areas, the fishery expanded dfdhore and to aher inshore areas df Newfoundland and Labrador.

Initially the fishery was prosecuted full-time by approximately 50 vessel s subject totrap limits. Beginning in 1985,
because of the fai ling inshore groundfish fishery, groundfish enter prises wer e granted “suppl ementary” licenses
to harvest arab during that part of the fishing season duri ng which cod were no | onger avail able. The number of
these supplementary licenses eventually rase to exceed 700, and theorigina “full -time” li censesare now restricted
tooffshorewaters. Finally, in 1995" temporary’ seasonal permitsweregranted to enter prisesfishingin vesselsless
than 35 ft.(10.6m.), who had been ineligibleto acquire supplementary licenses. By 1997, 2300 such permits had
been issued.

The fishery isnow managed on the basis of four fleet sectors: full-time (offshore), supplementary larger than 40
grosstons, supplementary lessthan 40 gross tons (but 35 feet in length or greater), and seasonal permitsfor vessds
less than 35 feet in length. All fleet sectars have designated trap limits, trip limits, fishing areas, and differing
seasons. Aswdl, al license and permit hdders work under an individual but non-transferable quaa.

3. THE PRODUCTION FRONTIER FUNCTION

Broadly speaki ng, production possibi lity fr onti ersar eestimated t hroughtwo disti nct approaches. DataEnvd opment
Analysis(DEA) isanon-parametric method whose main weaknessis an inability to allow for stochastic shocksto
thefrontier™. It is argualde that this characteristic of DEA renders it an unsuitable instrument for investigaing
production frontiers in noisy environments such as fisheries. Stochastic Frontier Analyds (SFA), in contrast, is
designed toincorpor atestochastic distur bances, but r equiresstr ong parametric speci ficationsin itsimpl ementation.

StochasticFrontier Andys swas developed indgpendently by Aigner et al. (1977) and Meeusen and van den Broeck
(1977), and is based on an econometric spedfication of a production firontier. For exampl e, if adouble-l og (Cobb-
Douglas) specification is adopted, as we shall do, then the production frontier of a group of N firms would be
specified as

Inyimax=|30+2k|3kln)(ki+viii=1!"'!N (1)
where y, is output of the i firm, the X, are k fadtors determining the production frontier, and v, is arandom
variablereflecting noise and other stochastic shocksentering intothe definition o thefrontier — factorssuch as
luck, bad weather, and so on. It is almost universal to specify this random variable as independent normally
distri buted with zer o mean, constant unknown vari ance o,?, and independent of the X,

v,~iidN(0,63, i=1,...,N ()]
Thedifference baween Iny,™ and observed Iny; is a (logari thmic) measure of the technical inefficiency of firm
i, and is modelled as an unobserved non-negative random variable u;, which is assumed to be distributed

independently of v, and the X,,.

w,=Iny™ -Iny, >0, i=1,...,N 3

For arecent survey see Seifard (1996). Recently Cazals et al. (2002) have proposed aDEA-typeestimat or
which is more robust to shocks.

2Seveal surveys of Stochastic Frontier Analysis are available, most recently Kumbakhar and Lovell
(2000). Recently, Park et al. (1998) have devel oped semiparametr ic estimators of stochastic frontiers.



In the original formulations of the model, Meeusen and van den Broeck moddled «; as having an exponential
distribution, which hasthe density fundion 6 exp{-6u}, while Aigner et al. used the half-normal distribution (a
zero-mean normal di stri bution truncated at zer o) aswell. These remain the two most common specifications for
thedigribution of u; inthe SFA literature.

Substi tuti ng (3) into (1) gives aregression equati on
Iny, =B+ i BeIN Xy +vi-u,, i=1,...,N (4

which can be estimaed by maximum likelihood once a density fundion for u; is speci fied. Further, estimation of
the u;'s provides a measure of the technical efficiency of the firmsin the sample.

Technical efficiency in the context of afishery is genera ly consi dered to be an indi cator of the capahility of the
skipper (Kirkley et al. 1998). What conditutes ‘kipper skill’ is not well understood, but navigationd ability,
knowledge of the acean, ability to adapt to changing ciraumstances and understanding of speciesbehaviour are
cited asrelevant factors (Squi resand K irkley 1999 survey the current gate o understanding about ‘ skipper skill’).
‘ Skipper skill” iswidely believed to bea highly variableattribute in at least some fisheries, with a small number
of ‘highliners’ often acoounting for a majar share of landings in the fishery. In modelling such fisheries, it is
obvi ously important to d low and account for technical i nefficiency among firmsinthe fishery.

4. STOCHASTIC FRONTIER ESTIMATION

Themodel isestimated withtriplog datafor crab cat ches off the coast of Newfoundland over theperiod 1993-1997.
We use for the X}, variables defining the production frontier the length of the vessel, engine horsepower, gross
tonnage, and number of days fished.We alsoinclude dummy variables for each year in the sample, primarily to
capture annua differences in resource abundance. Once log entries with mi ssing observations on any of these
variables are removed from the sample, we are left with 11,894 observations.

The variables used here are not conventiond economic inputs, and no doubt embody the standard capital, labour,
energy and materialsinputs only impafectly. On the other hand, it isfairly common for analysis of produdion in
afishery to be based on variables of this kind because of data limitati ons; seefor example, Kirkley et al. (1998).
However, one impli cation should be noted: if the included variables do not fully capture the effects of all factor
inputs, and if the use of theseomitted factars varies ygemati cally from firm tofirm, then theeffect of thesefadtors
will likdy be captured by that partion of the disturbance i, that we are identifying with technicd inefficiency.
Therefore, what we are measuring as technical inefficiency could be the effect of differencesin the use of these
omitted factars — differences that may be entirely apprapriatefor the firmsin question.

Maximum likelihood estimation of equation (4) requiresa specifi cation of the di stri bution of the error components
v; and u,. The former is univesally assumed to be narmally distributed, but the latter requires pedal treatment
because it is constrained to be non-negati ve. As noted above, the two most common specifications are the half-
normal distribution andtheexponential distribution. Fortunately, thesetwo specifications producesimilar estimates
of (4) with our data set, and both seem broadly cond stent with the data although the half-normal appearsto bea
little better fit. Neither of the pecifications nest into the aher, but the li kelihood ratio test proposed by Vuong
(1989) is available to test one hypothesis against the ather. When testing the half-normd model against the
exponential using our daa, the test atistic, which is distributed asstandard normal under the null hypathesisthat
thetwo models are equivalent, has avalue of 1.35 (p-value=0.09). Therefore, far atwo-tail test at a20% leve of
significance, the half-nor mal distri bution can be accepted against the exponential. At alower level of significance,
one cannot discriminate between the two hypaheses gven the data.

Onepoaint of contention with both pedficationsis thatthesedendty funcionsare maonotone decreasng far u; > 0.
Theimplicati on isthat technically efficient data are observed mare frequently than less technically dfident data,
because the density functi on speci fies how frequently a parti cular value of u,, and therefore a particul ar level of
technical inefficiency, isto be observed in the sample. This implication imposes strong requirements on the data
that may not be satisfi ed in fisheries having only asmall number of technically efficient ‘hi ghliners', as described
above.

Both the half-narmal and the exponential densities can be generalized to permit this possibility. For exampl e,



supposethat u; is distributedas anormal densitywith mean p but truncated at zero, asfirst proposed by Stevenson
(1980), w0 that

u,~iidN*(p, 0,3, i=1,...,N (5)

Essentially the haf-normd distribution is di gl aced hori zontally by u, and truncated at the origin sothat the
requirement that «; > O remains satified. Our estimates of equation (4) based on this truncat ed-normal model
(which arereported in Table2) do not differ materially from those generated by the half-normal specification, but
do enable usto reject statistically the hal f-normal mode! that nestsintoit.> Therefore, it appearsthat the truncated-
normal specification hasmore explanatory power inour samplethan the half-normal or exponenti al distributions,
and sowill be used in the remainder of this paper.*

The results of this cross-section estimation ar e presented in column 2 of Table 2. The Ordinary Least Squares
estimates are also presented for comparison. Except for the constant term, theresul tsdo not differ materially from
the OLS estimates, but the greater dficiency of the maximum-likelihood estimator is reflected in the generally
smaller standard errors associated with these estimates, which areal si gnificant at thefive percent level. The most
important vari able defining the production frontier isthelength of the vessd, with a production elasticity a little
larger than unity (because the variables are transformed into logarithms, the estimated parameters can be
interpreted as eladicities). The importance of vessd length may be a reflection of the fact that on-board storage
capacity (and so maximum catch) isclosely related to the length of the vessel. Motor horsepower, vessel tonnage,
and the length of the trip all haveonly a modest €fect (dasticities around 0.2-0.3) in production cgpacity. The
small effect of thenumber of daysfishing isespecially surprising, and may reflect the effect of trip limits. The year
dummy variabl es, with the exception of that pertaining to 1994, show anly asmall difference from the 1997 datum.

Also reported are estimat es of the parameters i, ¢, and ¢,? of the composi te err or term, a ong with esti mates of
the mean and varianceof thedistribution of the technical efficiency termu; (because the normal distribution is
truncated, the mean and variance of the truncated distributi on arenolonger i dentical to p and o, respectively, and
in fact depend on both parameters).® We estimate that most of the composte error can be ascribed tovariation is
technical inefficency u, rather than random variation which is not associated with diffeences in technical
efficiency v,. Specificdly, thevarianceinthe u; part of the compasiteerror is 0.67, while that of thev, part isonly
0.14. A likelihood-rati o test of the hypothedsthat p = 0,2 =0, so that therei sno variation in technical efficiency
in the sample (and so no skipper effect), decisi vely rejectsthenull hypothesi s; thevalue of thetest statistic is 1636,
which far exceeds the critical value of 5.138 at afive percent level of significance.®

Consistent estimation of equation (4) would enable retrieval o a point consistent estimate of the composite error
v; - u;. Separatingthis estimate into itstwo camponents ismoredifficul t. However, Jondrow et al. (1982) were able
to derive an unbiasad estimate of the technical inefficiency component u,, which is conditional on the vdue o the
composite error which can in turn be estimated by the equation residual. From this estimate, estimaes o the

3Specifi cdly, the estimate of u has a -statistic of -3.22 (p-value=0.0006), so that the null hypothesis of
p = 0 can be safely rejeded. Similarly, a likelihood ratio test of the half-normal against the truncated normal
model, which is asymptotically distri buted as x*(1), has a value of 22.962 (p-value=10?).

“Note, however, that the estimate of . is negative, and so the density functi on of »; remains monotone
decreasing. The reason, as discussed bdow, is that the digribution of technical efficienciesisstrongly skewed to
theright (see Figure 1(a)), and this distribution is best captured by a truncated normal with negative p. While
highline effectsare present, theseare daminated by the skew in the distribution.

SWriting A=¢[p/o,]/®[u/o,], wheare ¢ and @ are the standard normal probability density and cumulative
distribution functions respectivdy, E[u] = p + o,A and Var[u] = ¢, [1 - A(p/o, + 1)].

*Thetestis implemented using thevalues of the log-li kelihoods of the OLS and Maxi mum- Likeli hood
estimates respectively, these two estimatesbeing equivalent under the null hypothesis . = 6,2 = 0. Under the null
hypothesis, thetest statisticis asymptotical ly distributed as theweighted chi-square variable 0.5¢%(1) + 0.5¢42),
rather than as a simple %%(2), because the value of ¢,% under the null hypahesis is an the bounday o the
admissibleparameter space, and so atwo-sided test isinappropriate. See Gouriérouxet al. (1982), Koddeand Palm
(1986), and Coelli (1995).



technical dfidency of each obervation can be deived. A measure of technicd effidency that iscongstent with
a definition of technical efficiency ariginally proposed by Farrell (1957) woud be theratio of acud to fronti er
production y, / ™, which by equations (1) and (4) must equal exp(-u;). Battese and Coelli (1983) derived an
unbiased esti mate of this measure,” the summary statistics for which are also reported in Table 2.

These estimatesof technical efficiency range from a maximum of 0.92 toa minimum of jug above zero, and the
mean level is0.47 (standard deviation=0.24). A histogram (Figure 1(a)) revealsadistri bution that is skewed to the
right, with amode at around 0.75 but with only a few doservationsin excessof around 0.85. Theseestimatesare
cond stent with the characterization of skipper skill described above, as an attribute thatishighly variable and with
only afew dbservations consistent with ahigh level of technical &ficiency. They suggest that on average afishing
trip was conducted at lessthan 50 percent efficiency— or, lodking at it from another perspective, the same catch
could have been obtained with half the trips if thesehad been conducted in atechnically efficient manner. Even
in comparison to most arti sanal i ndustriesthat have been studi ed using this method,® thisisadismal performance.

5. A PANEL MODEL OF THE STOCHASTIC PRODUCTION FRONTIER

The specification outlined in the previous sedion permits for each trip in the sample, a decompasition in the
stochastic error between technical inefficiency -u; and other random factors v,. However, it can be argued that
technical inefficiency is a characteri i ¢ of the firm, and should be roughly the same for dl tripstaken by a
particular enterprise In fect, an analysis o variance of the trip technical dficiency measures esimated in the
previous section shows that when these technical effidency estimates are grauped by vessel, the mean square
variaion between groups is 0.421, as compaed with a mean square variation within groups of anly 0.033.
Therefore, the measured variation in technical effidency from trip to trip by the same vessel is minusculein
comparison to the differences between vessels?® This findi ng supports the i nter pretation of technical efficiency as
being largdy a function of ‘ skipper skill.’

If the assumption that technical inefficiency u; is the samefor all observations on a particul ar vessel isvalid (we
presant someevidencein the next section that it may not be), incr eased effi ciency can be achieved by reedimating
theproduction frontier asapanel subject to thisrestriction, an approach fir st implemented by Pitt and Lee (1981).
The regr ession equati on then becomes

Ny, =Bo+ Yi B IN Xy, + vy, - s,

=1, N 1= 1T,
v, ~iid N(0,0,2) =L..o M=l ()

so that dl variabl es except technica in€ffi ciency u; are subject to two subscripts: i for each vessel and ¢ for each
observation (trip) on the vessel. Our database consists of 11,894 observations on 848 vessels.

Applying the truncated normal specification (5) for u; in equation (6), as in Kumbhakar (1987) and Batteseand

f wewritee, =v, - u,, y = 0,2/ (6,2 + ¢,%), and %= yo,? then thetechnical efficiency of the i observation
can be estimated as
Elu, e ] =[1-@(C + e,/ Q)] exp(ve; + (?/2) 1 [1- ®(ye,/ Q)]
where @ is the standard normal cumulati ve probability function. While unbiased by construction, it is not
consistent because it does not conver ge with probabi lity one to the true value of u; as the sample increases.

8Some representaive exampes ae Audralian dary farme's (Battese and Coelli 1988), with technical
efficiency measuresin therange 0.63-0.77; Indianpaddy farmers (Batteseand Coelli 1992), intherange 0.82-0.94;
Japanese rice famers (Ajikefun et al. 1996), 0.74; mid-Atlanti c scall op dredgers (Kirkley et a/.1998), 0.75; and
Hawaii longline fishers (Sharma and Leung 1998), 0.69-0.89. An exception is Kuperan et al. (2001), who
mesasured the average technical efficiency of aMal aysian trawl fishery at 0.49. For an earlier survey, see Bravo-
Ureta and Pinheiro (1993).

“The value of the F statistic, with 847 and 11893 degress of freedom, is 12.7, clearly rejecting the null
hypothesisthat all measur es of technical efficiency are drawn from the same population. At the sametime, since
there are many more trips than there are vessels, the total amount of variation in technical efficiency is about
equa ly split between between-group and within-group variability.



Coelli (1988), producestheestimates reportedin thethird column of Talde 2 and |abelled asthe Panel DataModd.
These results can be profitably compared with those of the Cross-Section Model, also reported in Table 2. First
consider the estimates of the stochastic parameters i, 0,2 and o,2. The panel specification implies that the value
of u,, isthe same for all observaionson firmi. Whilein the Cross-Section Modd the random variablew; captures
both between-group and within-group variation in technical efficiency, in the Panel Model only between-group
vari aion is captured, leaving within-group variation to be captured by other elementsof the madel, including the
random variable v,,. It can be expected then that u, becomes lessimportant relati ve to v;, in the Panel Model. This
isexactly what happens; the vari ance of u; iscut i n half, whilethat of v, increases threefold. Natwithstanding the
reduced impartance of the technical ineffidency term, we continue to reject the null hypothesis that p = 0,2 =0,
which wauld have implied that technical efficiency efects are absent fram the data.®

Ingenera terms, the parameters of the production frontier do nat change in a mgor way, but the differencesare
not negligible. The finding of considerable technical inefficiency remains, the technical efficiency measures
averaging 0.5. The histogram (see Figure 1(b)) of thetechni cal efficiency measur es(now based on that of the vessel
rather than thetrip) ismare symmetrical than in theprevioussedion, with amodd value around 0.42. Only asmall
number of vessels (14 out of 848) havetechnical efficiency in excess of 0.9. However, the characteristics of these
vesselsare broadly representative of the sample, perhaps with atendency for gross tonnage to be below average.
Two of the 14 are temporary seasonal permit holders.

6. A MODEL OF TECHNICAL EFFICIENCY

The consistency o both the Cross-Section and Panel Model edimates depend on the assumption that the
disturbance term v, - u; is uncorrelated with the X, variables. If thisis untrue, some of the di sturbance will be
incorrectly ascribed to the X, variables. Themodd of Zellner et al. (1966) is often cited (e.g., by Kirkley et al.
1998) to judify the argument that if the disturbance term isunknown tothe firm at thetime that thei nput decision
ismade, thisdecis onwill be made on the basis of expected profit maximization, and sowill be uncorrelated with
the disturbance term. While this argument has some campelling logic where the random compaonent v,, of the
disturbance term is concerned, its rd evance to thetechnical inefficiency termu; islessapparent. It would appear
to depend on whether the technical efficiency of afirm affects its decisions about factor inputs.

Some evidence on this point can be obtained from using a Hausman test compari ng the fix ed-effect and random-
effects estimat ors of the panel model (see, for example Greene 2000, pp. 576-577). If the null hypothesis that «;
isuncorrel ated with the X, is true, there wauld be no dgnificant dfference beween thetwoestimates In fact, the
Hausmantest, whichisasymptotically distributed asy*(8), hasavalue of 40.7 (p-val ue=0.000002), suggeging that
the null hypothesisis false and that the technical efficiency effectsarerelated to a leag some o theexplanatory
variables in the production frontie equation.

Under these conditions, thefixed effect modd is often recommended asthe estimator of choiceinthe panel model

literature. However, there is a growing consensus (see however Gong and Sickles 1989) that the fixed-effeds
edimator does not perform well in stochastic frontier models. As Greene (2001) putsit, “In the context of the
stochastic frontier model, there is a particular ambiguity about the use of the fixed effeds model. The term picks
up al firm specific heterogeneity, whether it isin the production frontier or in the inefficiency term, and lumps it
al into the singl e *effect’.” (See also Simar 1992). Wi th our data, most of the variation (except for the days fished
variable) is predominantly between groups rathe than within groups, and sothefixed-effect estimator (sometimes
called the within-groups estimator) fails to utilize most of the information in this data set.

Another approach isto specify amodel of technical efficiency that depends on aset of variables which may include
some or all of the X, vari ables defini ng the production frontier. Inthisway, the effects of a set of variables on the
production frontier can be separated from the &fect of a (possbly ovelapping) s of variables on the placement
of a paticular observation insidethe frontier. The easiest way of doing thi s, while retaini ng use of the truncated

1A likelihood-ratio test, implementing the | og-likelihoods of the Ordinary Least Squares and Pand
Maximum Likelihood estimates respectively, givesatest statistic of 4898, whilethe critical valueat afive percent
level of sgnificanceis5.138. Thergection is even stranger than in the Cross-Section Model, becausein the Panel
Model the mai ntained hypothesis specifies fir m-specific values for the u,, which can be estimated more precisdy
since they are based on observations from several trips instead of just one.



normal specifi cation, isto specify one of the parameters of thedistribution asalinea function of several variables;
for example, asin Battese and Coelli (1995),

i um 2

ty ~ 1A N (o 0,) i=1,... N t=1...T, (7)
By = OpF Zj 5/ anm

In such amodel, the Z variables af fect technical efficiency e*in alog-linear way, and so the §; can be inter preted

asthe negative of the € adti city of technical efficiency with respect to Z.

Such amodel would serve two useful purposes. First, it enables us to separate the effects of production vari ables
on the production frontier from the effect of these variables on technical efficiency, and thereby ensure that the
parameter estimatesare consistent. We can do that by including in the Z vari ables those pr oducti on variabl es that
enter the production frontier which we think may al soaffect technical &ficiency. Second, such amodel would also
enable usto shed some light on whether recent regulatory changes in thisfishery, andin particularly theissuance
of temporary sessonal permitsto smaller vessds, have implicati ons for technical efficiency in thisfishery.t

Weinclude in the Z variables all variables (except for the year dummieg that enter into the production frontier.
Theresutant madel as specified by equations (6) and (7) was estimated. The estimates of the technical efficiency
effects are presented in Table 1, while those of the production frontier are presented in cdumn 4 of Tabe 2 and
labelled the Technical Efficiency Maodel.

Thetechnical efficiency model isstatigically significant, with the null hypothesisthat 5, =8, = 6;=8,=0rejected
by alikelihood-ratiotest with avalueof 232.4, as contrasted with acritical val ue for the x(4) distribution of 9.49
at the five percent levd of significance. Of the individua effects, length of vessdl, perhaps surprisingly, is not
statistically significant, so that the idea that small vesselsare assod ated with technical ineffidency recdves no
support from the data. However, bath tonnage and days per fishing trip are associated with technical efficiency,
while horsepower shows a modest but statistically significant negative associ aion withtechnicd efficiency. One
implication is that trip limits can reduce technical effidency if they lead totrips that are artificially shortened
because of the impasition of thelimit.

Allowingfor these technical efficiency effects modifies the estimates of the praduction frontie somewhat. Length
of vessdl remains important, and vessel horsepowe has someeffect as well. But theeffect of vessel tonnageis no
longer stetistically significant, and the length of the fishing trip becomes even less impartant (although still
statistically significant). The year dummies becomel essimportant, andtwobecmmestatisticallyinsignificant. The
estimates of technical efficiency at the firm level are even lower than before; technical efficiency is estimated to
average 0.41 in our sample.”

7. CONCLUSION

While the three models estimated in this paper differ in detail, they all highlight the importance of allowing
explicitly for technical efficiency in modelling productivity in this fishery. The cond stent findi ng of an average
level of technical efficiency inthisfishery that isat or below fifty percent isamatter that should be of considerable
concern to those responsible for developing licensing policy in this and similar fisheries.

19uch amodel can also potentially shed light on factars entering into ‘ skipper skill’, asin Kirkley at al.
1998 and Kuperanet al. 2001. Unfortunately, tripl og datado not contain muchinformation on the char acteristi cs
of the skipper to be useful for this purpose.

2These results are cons stent with the finding of Wang and Schmidt (2002), based on Monte Carlo
evidence, that i f the dependency of inefficiency onthe Z variables is ignored, theestimated fir m-level efficiencies
arespuriously underdisper sed. Since thetechnical inefficiency random vari able u;, isnow a function of theZ,,, and
the parameer p isno longer fixed, the mean and variance of thisrandom variable is now conditional on the value
of theZ,,; thevalues of p and of the moments of u that are reported in Table 2 arethose applicadeto Z,,’sequal
to thesample mean.
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Figures 1(a) and 1(b): Technical Effidency Estimates, (a)Cross Section and (b)Panel Models

Table 1. Estimatesof the technical efficiency parameters o the Technical Efficiency Model,
along with associated appraximatestandard errars

Congant 2.490
(0.951)
Length 0.085*
(0.295)
Horsepower 0.278
(0.063)
Tonnage -0.817
(0.094)
Trip Length (days) -0.566
(0.096)

* - Estimateis not significant at the five percent level.



Table 2. Estimat es of the parameters of the Stochastic Production Frontier Models,
alongwith associated appraximatestandard errars

Ordinary Cross-Section Panel Data Technical

Least Squares Model Model Efficiency
Model
Congant 1.463 2.631 3.256 3.557
(0.276) (0.228) (0.494) (0.326)
Length 1.098 1.132 0.870 1.096
(0.085) (0.070) (0.164) (0.100)
Horsepower 0.185 0.247 0.179 0.331
(0.021) (0.016) (0.036) (0.021)
Tonnage 0.301 0.190 0.317 -0.046*
(0.027) (0.022) (0.049) (0.031)
Trip Length 0.385 0.280 0.407 0.154
(days) (0.031) (0.025) (0.026) (0.030)
Y ear 1993 0.045* -0.046 -0.200 0.028*
(0.025) (0.021) (0..41) (0.021)
Year 1994 -0.978 -1.233 -1.382 -1.200
(0.051) (0.042) (0.089) (0.048)
Y ear 1995 -0.086 -0.042 -0.178 0.004*
(0.023) (0.018) (0.036) (0.018)
Y ear 1996 -0.107 -0.109 -0.200 -0.083
(0.022) ((0.017) (0.035) (0.016)
Log-Likdi- -15626 -14808 -13177 -14692
hood
0 — -1.081 0.290* 0.235
(0.336) (0.207)
o (Var[v]) 0.811 0.144 0.079 0.079
o’ — 2.749 0.774 1.779
Efu] — 0.998 0.818 1.154
Var[u] — 0.673 0.342 0.718

Technical Efficiency Estimates

Mean TE — 0.472 0.508 0.412
Maximum TE — 0.917 0.951 0.936
Minimum TE — 0. 00006 0.049 0.00005
StDev (TE) — 0.235 0.216 0.246

* - Estimates are not significant at the five percent level.



