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Abstract. Since the collapse of the Newfoundland groundfishery in 1992, the snow crab fishery has become
Newfoundland’s largest fishery, accounting for approximately half the value of total landings.  This study uses trip
log data to estimate the production frontier and the technical efficiency of this fishery using a Stochastic Frontier
Analysis (SFA) methodology. The analysis is based on over 11,000 observations taken over a five-year period. The
technical efficiency of the fishery is estimated to be at a level of fifty percent or less.
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1. INTRODUCTION

The collapse of the groundfish fishery in Newfoundland beginning in 1992 is well known (see, for example,  Gordon
and Munro, 1996; Roy, 1996; Ruitenbeek, 1996; Schrank, 1995). The most recent stock status report on Northern
cod by Canadian fisheries scientists has concluded that the stock continues to decline despite the virtually complete
closure of the fishery (Fisheries and Oceans Canada, 2002).

Notwithstanding the collapse in groundfish stocks, shellfish catches have more than offset the near-closure of the
ground fishery. While total landings in Newfoundland valued $262 million in the year before the cod moratorium
was inst ituted (1991), they had increased to $587 milli on by 2000. Almost all of this increase was in shellfish,
predominantly crab and shrimp.

However, these fisheries are not performing the economic role that cod used to play in  the rural economy of
Newfoundland. Neither harvesting nor processing of shellfish is as labour-intensive as that  of groundfish, an d so
employment in the industry is still low compared to pre-moratorium levels. Nonetheless, many former cod fishers
have been able to use existing and newly issued crab and shrimp licenses to replace the revenues that  groundfish
previously generated.  As a result , landings of snow crab (Chionecetes opilio) increased from 16,441 tonnes in 1992
to 69,121 tonnes in 1999. Shr imp landings show a similar  increase.

The radical change in the operating circumstan ces of this relatively homogeneous fishery provides a basis on which
the impact of this major expansion on the economic productivity of the fishery can be assessed. Accordingly, this
paper utilizes t rip log data on crab catches over the period 1993-1997 to estimate a frontier productivity model of
the crab fishery. These data are utilized to estimate a technically-efficient production frontier for this fishery, and
to estimate measures of the technical efficiency of firms exploiting this fishery. It is clearly of interest to establish
whether technical efficiency varies systematically with characteristics of the firm, and an attempt is made to
determin e whether this is the case.

The Newfoundland snow crab fishery is described in the next section, while the stochastic frontier model is briefly
outlined in Section 3. The next three sections present three empirical analyses of the snow crab fishery that are
based on the stochastic frontier model. Section 4 estimates the production frontier and the associated technical
inefficiencies of the obser ved data usin g a cross-section analysis of the trip log data. Section 5 groups the trip data
by vessel in order  to estimate a  panel model  of the production frontier; here the techn ical efficiency of each vessel
is assumed to remain stable through the sample. Finally, Section 6 examines the possibility that the technical
efficiency of a vessel may be related to certain characteristics. Section 7 concludes the paper.



1For a recent survey see Seiford (1996). Recently Cazals et al. (2002) have proposed a DEA-type est imator
which is more robust to shocks.

2Several surveys of Stochastic Frontier Analysis are available, most recently Kumbakhar and Lovell
(2000). Recently, Park et al. (1998) have developed semiparametr ic estimators of stochastic frontiers.

2. THE NEWFOUNDLAND SNOW CRAB FISHERY

Snow crab are distributed widely over the Northwest Atlantic from Greenland to the Gulf of Maine. Total Allowable
Catches are set for three distinct areas off Newfoundland and Labrador, corresponding roughly to the Northeast,
South, and West coasts. Only males with carapace length in excess of 95 mm may legally be caught.

The fishery initially began in 1968 in inshore waters as gillnet bycatch. However, within several years a directed
trap (“pot”) fishery had become established along the northeast coast of the islan d. As catches declined in these
traditional areas, the fishery expanded offshore and to other inshore areas off Newfoundland and Labrador.

Initially the fishery was prosecuted full-time by approximately 50 vessels subject to trap limits. Beginning in 1985,
because of the failing inshore groundfish fishery, groundfish enterprises were granted “supplementary” licenses
to harvest crab during that part  of the fishing season  during which cod were no longer  available. The number of
these supplementary licenses eventually rose to exceed 700, and the original “full -time” licenses are now restricted
to offshore waters. Finally, in 1995 “temporary” seasonal permits were granted to enterprises fishing in  vessels less
than 35 ft.(10.6m.), who had been ineligible to acquire supplementary licenses. By 1997, 2300 such permits had
been issued.

The fishery is now managed on  the basis of four fleet sectors: full-time (offshore), supplementary larger than 40
gross tons, supplementary less than 40 gross tons (but 35 feet in length or greater), and seasonal permits for vessels
less than 35 feet in length. All fleet sectors have designated trap limits, trip limits, fishing areas, and differing
seasons. As well, all license and permit holders work under an individual but non-transferable quota. 

3. THE PRODUCTION FRONTIER FUNCTION

Broadly speaking, production possibility frontiers ar e estimated through two distinct approaches. Data Envelopment
Analysis (DEA) is a non-parametric method whose main weakness is an inability to allow for stochastic shocks to
the frontier 1. It is arguable that this characteristic of DEA renders it an unsuitable instrument for investigating
production frontiers in noisy environments such as  fisheries. Stochastic Frontier Analysis (SFA), in contrast, is
designed to incorporate stochast ic disturbances, but requires strong parametric specifications in  its implementation.2

Stochastic Frontier Analysis was developed independently by Aigner et al. (1977) and Meeusen and van den Broeck
(1977), and is based on an econometric specification of a production frontier. For example, if a double-log (Cobb-
Douglas) specifi cation  is adopted, as we shall do,  then  the production front ier of a group of N firms would be
specified as

ln yi
max = $0 + 3k $k ln Xki + vi ,  i = 1, . . . , N (1)

where  yi is output of the ith firm, the Xki are k factors determining the production frontier, and vi is a random
variable reflecting noise and other stochastic shocks entering into the definition of the frontier — factors such as
luck, bad weather, and so on. It is almost universal to specify this random variable as independent normally
distributed with zero mean, constant unknown variance Fv

2, and in dependent  of the Xki.

vi ~ iid N(0,Fv
2) ,  i = 1, . . . , N (2)

The difference between ln yi
max and observed ln yi is a (logari thmic) measure of the technical inefficiency of firm

i, and is modelled as an unobserved non-negative random variable ui, which is assumed to be distributed
independently of vt and the Xkt.

ui = ln yi
max  - ln yi $0 ,   i = 1, . . . , N (3)



In the original formulations of the model, Meeusen and van den Broeck modelled ui as having an exponential
distribution, which has the density function 2 exp{-2u}, while Aigner et al. used the half-normal distribution (a
zero-mean normal distribution  trun cated at zero) as well . These remain the two most common specifications for
the distr ibution of  ui in the SFA literature.
 
Substi tuting (3) into (1) gives a regression equation

ln yi = $0 + 3k $k ln Xki + vi - ui,     i = 1, . . . , N (4)

which can be estimated by maximum likelihood once a density function for ui is specified. Furth er, estimation of
the ui’s provides a measure of the technical efficiency of the firms in the sample.

Technical efficiency in the context of a fishery is gen eral ly considered to be an indicator  of the capability of the
skipper (Kirkley et al. 1998). What consti tutes ‘skipper  ski ll’ is  not  well un derstood, but navigational ability,
knowledge of the ocean, ability to adapt to changing circumstances, and understanding of species behaviour are
cited as relevant factors (Squires and Kirkley 1999 survey the current state of understanding about ‘skipper skill’).
‘Skipper skill’ is widely believed to be a highly variable attribute in at least some fisher ies, with a  small number
of ‘highliners’ often accounting for a major share of landings in the fishery. In modelling such fisheries, it is
obviously important to allow and account for  technical inefficiency among firms in the fishery.

4. STOCHASTIC FRONTIER ESTIMATION

The model is estimated with t rip log data for crab catches off the coast of Newfoundland over the per iod 1993-1997.
We use for the Xki variables defining the production frontier the length of the vessel, engine horsepower, gross
tonnage, and number of days fished.We also include dummy variables for each year in the sample, primarily to
capture annual  differences in resource abundance. Once log entries with missing observations on any of these
variables are removed from the sample, we are left with 11,894 observations.

The variables used here are not conventional economic inputs, and no doubt embody the standard capital, labour,
energy and materials inputs only imperfectly. On the other hand, it is fairly common for analysis of production in
a fishery to be based on var iables of this kind because of data limitations; see for  example,  Kirkley et al. (1998).
However, one implication should be noted: if the included variables do not fully capture the effects of all factor
inputs, and if the use of these omitted factors varies systematically from firm to firm, then the effect of these factors
will likely be captured by that portion of the disturban ce ui that we are identifying with technical  inefficiency.
Therefore,  what we are measuring as technical inefficiency could be the effect of differences in the use of these
omitted factors — differences that may be entirely appropriate for the firms in question.

Maximum likelihood estimation  of equation (4) requires a specification  of the distribution  of the error components
vi and ui. The former is universally assumed to be normally distributed, but the latter requires special treatment
because it is constrained to be non-negative. As noted above, the two most common specificat ions are the half-
normal distribution and the exponentia l distribution.  Fortunately, these two specifications produce similar estimates
of (4) with our data set, and both seem broadly consistent with the data, although the half-normal appears to be a
little better fit. Neither of the specifications nest into the other, but the likelih ood ratio test proposed by Vuong
(1989) is available to test one hypothesis against the other. When testing the half-normal model against the
exponential using our data, the test statistic, which is distributed as standard normal under the null hypothesis that
the two models are equivalent, has a value of 1.35 (p-value=0.09). Therefore, for a two-tail test at a 20% level of
significance, the half-normal distribution can be accepted against  the exponential. At a lower level of significan ce,
one cannot discriminate between the two hypotheses given the data.

One point  of contention with both specifications is that these density functions are monotone decreasing for ui $ 0.
The implication is that technically efficient data are observed more frequently than less technically efficient data,
because the density function speci fies how frequently a particular  value of ui, and therefore a par ticular level of
technical inefficiency, is to be observed in the sample. This implication imposes strong requirements on the data
that may not be sa tisfied in fisher ies having only a small number of technically efficient ‘highliners’, as descr ibed
above.

Both the half-normal and the exponential densities can be general ized to permit this possibili ty. For example,



3Specifically,  the estimate of : has a t-statistic of -3.22 (p-value=0.0006), so that the null hypothesis  of
: = 0 can be  safely rejected. Similarly, a likelihood ratio test of the half-normal against the truncated normal
model, which is asymptotically distributed as P2(1), has a value of 22.962 (p-value=10-5).

4Note, however, that the estimate of : is negative,  and so the density function of ui remains monotone
decreasing. The reason, as discussed below, is that the distribution of technical efficiencies is strongly skewed to
the right (see Figure 1(a)), and this distribution is best captured by a truncated normal with negative :. While
highliner effects are present, these are dominated by the skew in the distribution.

5Writing 8=N[:/Fu]/M[:/Fu], where N and M are the standard normal probability density and cumulative
distribution functions respectively, E[u] = : + Fu8 and Var[u] = Fu

2 [1 - 8(:/Fu + 8)].

6The test is implemented using the values of the log-likelihoods of the OLS and Maximum-Likelihood
estimates respectively, these two estimates being equivalent under the null hypothesis : = Fu

2 = 0. Under the null
hypothesis, the test statistic is asymptotically distributed as the weighted chi-square variable  0.5P2(1) + 0.5P2(2),
rather than as a simple P2(2), because the value of  Fu

2 under the null hypothesis is on the boundary of the
admissible parameter space, and so a two-sided test is inappropriate. See Gouriéroux et al. (1982), Kodde and Palm
(1986), and Coelli (1995).

suppose that ui is distributed as a normal density with mean : but truncated at  zero,  as first  proposed by Stevenson
(1980), so that

ui ~ iid N+(:, Fu
2) ,  i = 1, . . . , N (5)

Essentially the half-normal distribution is displaced horizontally by :, and truncated a t the origin so that the
requirement that ui $ 0 remains satisfied. Our estimates of equation (4) based on this t runcated-normal model
(which are reported in Table 2) do not differ materially from those generated by the half-normal specification, but
do enable us to reject statistically the hal f-normal  model that nests into it.3 Therefore, it appears that the truncated-
normal specification has more explanatory power in our sample than  the half-normal or exponential distributions,
and so will be used in the remainder of this paper.4

The results of this cross-section estimation ar e presented in column 2 of Table 2. The Ordinary Least Squares
estimates are also presented for comparison.  Except  for the constant term, the resul ts do not differ  materially from
the OLS estimates, but the greater efficiency of the maximum-likelihood estimator is reflected in the generally
smaller  standard errors associated with these estimates, which are all significant at  the five percent level. The most
important variable defining the production frontier is the length of the vessel, with a production elasticity a little
larger than unity (because the variables ar e transformed into logarithms, the est imated parameters can be
interpreted as elasticities). The importance of vessel length may be a reflection of the fact that on-board storage
capacity (and so maximum catch) is closely related to the length of the vessel. Motor horsepower, vessel tonnage,
and the length of the trip all have only a modest effect (elasticities around 0.2-0.3) in production capacity. The
small effect of the number of days fishing is especially surprising, and may reflect the effect of trip limits. The year
dummy variables, with the exception of that pertaining to 1994, show only a small difference from the 1997 datum.

Also reported are estimates of the parameters :, Fu
2, and Fv

2 of the composite error term, along with estimates of
the mean and variance of the distribution of the technical efficiency term ui (because the normal distribution is
truncated, the mean and variance of the truncated distr ibution are no longer identical to  : and Fu

2 respectively, and
in fact depend on both parameters).5 We estimate that most of the composite error can be ascribed to variation is
technical inefficiency ui rather than random variation which is not associated with differences in technical
efficiency  vi. Specifically, th e variance in the ui part  of the composite error is 0.67, while that of the vi part is only
0.14. A likelihood-ratio test of the hypothesis that :  = Fu

2 = 0, so that there is no variat ion in technical  efficiency
in the sample (and so no skipper effect),  decisively rejects the null hypothesi s; the value of the test statistic is 1636,
which far  exceeds the crit ical value of 5.138 at a five percent level of significan ce.6

Consistent estimation of equation (4) would enable retrieval of a point consistent estimate of the composite error
vi - ui. Separating this estimate into its two components is more difficul t. However, Jondrow et al. (1982) were able
to derive an unbiased estimate of the technical inefficiency component ui, which is conditional on the value of the
composite error which can in turn be estimated by the equation residual.  From this estimate, estimates of the



7If we write ,i = vi - ui, ( = Fu
2 / (Fu

2 + Fv
2), and .2 = (Fv

2 then  the technical efficiency of the ith observat ion
can be estimated as

E[ui | ,i ] = [1 - M(. + (,i / .)] exp( (,i + .2 /2) / [1 -  M((,i / .)]
where M is the standard normal cumulative probability function. While unbiased by construction , it is not
consistent  because i t does not converge with  probabi lity one to the true value of ui as the sample increases.

8Some representative examples are Australian diary farmers (Battese and Coelli 1988), with technical
efficiency measures in the range 0.63-0.77; Indian paddy farmers (Battese and Coelli 1992), in the range 0.82-0.94;
Japanese rice farmers (Ajibefun et al. 1996), 0.74;  mid-Atlantic sca llop dredgers (Kirkley et al.1998), 0.75; and
Hawaii longline fishers (Sharma and Leung 1998), 0.69-0.89. An exception is Kuperan et al. (2001), who
measured the average techn ical efficiency of a Malaysian  trawl fishery at 0.49.  For an  earl ier survey, see Bravo-
Ureta and Pinheiro (1993).

9The value of the F statistic, with 847 and 11893 degrees of freedom, is 12.7, clearly rejecting the null
hypothesis that a ll measures of technical efficiency are drawn from the same population. At the same time, since
there are many more trips th an there are vessels, the total amount of variation in  technical efficiency is about
equally split between between-group and within-group var iability.

technical efficiency of each observation can be derived. A measure of technical efficiency that is consistent with
a definition of technical efficiency originally proposed by Farrell (1957) would be the ratio of actual to frontier
production yi / yi

max, which by equations (1) and (4) must equal exp(-ui). Battese and Coelli (1988) derived an
unbiased estimate of this measure,7 the summary statistics for which are also reported in Table 2.

These estimates of technical efficiency range from a maximum of 0.92 to a minimum of just above zero, and the
mean level is 0.47 (standard deviation=0.24). A histogram (Figure 1(a)) reveals a distribution that is skewed to the
right, with a mode at around 0.75 but with only a few observations in excess of around 0.85. These estimates are
consistent with the characterization of skipper skill described above, as an attribute that is highly variable and with
only a few observations consistent with a high level of technical efficiency. They suggest that on average a fishing
trip was conducted at less than 50 percent efficiency — or, looking at it from another  perspective, th e same catch
could have been obtained with half the trips if these had been conducted in a technically efficient manner. Even
in comparison  to most arti sanal industr ies that  have been studied using this method,8 this is a dismal performance.

5. A PANEL MODEL OF THE STOCHASTIC PRODUCTION FRONTIER

The specification outlined in the previous section permits, for each trip in the sample, a decomposition in the
stochastic error between technical inefficiency -ui and other random factors vi. However, it can be argued that
technical inefficiency is a characteristic of the firm, and should be roughly the same for  all trips taken by a
particular enterprise. In fact, an analysis of variance of the trip technical efficiency measures estimated in the
previous section shows that when these technical efficiency estimates are grouped by vessel, the mean square
variation  between groups is 0.421, as compared with a mean square variation within groups of only 0.033.
Therefore, the measured variation in technical efficiency from trip to trip by the same vessel is minuscule in
compar ison to the differences between vessels.9 This finding supports the interpretation  of technical efficiency as
being largely a function of ‘skipper skill.’

If the assumption  that technical inefficiency ui is the same for all observat ions on  a par ticular vessel is valid (we
present some evidence in  the next sect ion that  it may not be),  increased efficiency can be achieved by reestimating
the production frontier  as a panel subject to this restriction , an approach fir st implemented by Pitt and Lee (1981).
The regression equation then becomes

ln yit = $0 + 3k $k ln Xkit + vit - ui,   i = 1, . . . , N;  t = 1,...,Ti     (6)
 vit ~ iid N(0,Fv

2)

so that all variables except technical  inefficiency ui are subject to two subscripts: i for each vessel and t for each
observation (trip) on the vessel. Our database consists of 11,894 observations on 848 vessels.

Applying the truncated normal specification (5) for ui in equation (6), as in Kumbhakar (1987) and Battese and



10A likelihood-ratio test, implementing the log-likelihoods of the Ordinary Least Squares and Panel
Maximum Likelihood estimates respectively, gives a test statistic of 4898, while the critical value at a five percent
level of significan ce is 5.138. The rejection  is even stronger than in the Cross-Section Model, because in the Panel
Model the maintained hypothesis specifies fir m-specific values for the ui, which can be estimated more precisely
since they are based on observations from several tr ips instead of just one.

Coelli (1988),  produces the estimates reported in the third column of Table 2 and labelled as the Panel Data Model.
These results can be profitably compared with those of the Cross-Section Model, also reported in Table 2. Fir st
consider th e estimates of the stochastic parameters :, Fu

2, and Fv
2. The panel specification implies that the value

of  ui, is the same for all observations on firm i. While in the Cross-Section Model the random variable ui captures
both between-group and within-group variation in technical efficiency, in the Panel Model only between-group
variation  is captured, leavin g within-group variation to be captured by other elements of the model, including the
random variable vit. It can be expected then that ui becomes less important relative to vit in the Panel Model. This
is exactly what happens; the variance of ui is cut in ha lf, while that of vit increases threefold. Notwithstanding the
reduced importance of the technical inefficiency term, we continue to reject the null hypothesis that : = Fu

2 = 0,
which would have implied that technical efficiency effects are absent from the data.10

In gen eral  terms, the parameters of the production frontier  do not change in a major way, but the differences are
not negligible. The finding of considerable technical in efficiency remains, the technical efficiency measures
averaging 0.5. The histogram (see Figure 1(b)) of the technical efficiency measures (now based on that  of the vessel
rather than the trip) is more symmetrical than in the previous section, with a model value around 0.42. Only a small
number of vessels (14 out of 848) have technical efficiency in excess of 0.9. However, the characteristics of these
vessels are broadly representative of the sample, perhaps with a tendency for gross tonnage to be below average.
Two of the 14 are temporary seasonal permi t holders.

6.  A MODEL OF TECHNICAL EFFICIENCY

The consistency of both the Cross-Section and Panel Model estimates depend on the assumption that the
disturbance term vit -  ui is uncorrelated with the Xk variables.  If this is untrue, some of the disturbance will be
incorrectly ascribed to the Xk variables. The model of Zellner et al. (1966) is often cited (e.g., by Kirkley et al.
1998) to justify the argument that if the disturbance term is unknown to the firm at the time that the input  decision
is made,  this decision will  be made on  the basis of expected profit maximization, and so will be uncorrelated with
the disturbance term. While this argument has some compelling logic where the random component vit of the
disturbance term is concerned, its relevance to the technical inefficiency term ui is less apparent. It would appear
to depend on whether the technical efficiency of a firm affects its decisions about factor inputs.

Some evidence on th is point can  be obtained from using a Hausman test comparing the fixed-effect and random-
effects est imators of the panel model (see, for example, Greene 2000, pp. 576-577). If the null hypothesis that ui

is uncorrelated with the Xk is true, there would be no significant difference between the two estimates. In fact, the
Hausman test, which is asymptotically distributed as P2((8), has a value of 40.7 (p-value=0.000002), suggesting that
the null hypothesis is false and that the technical efficiency effects are related to at least some of the explanatory
variables in the production frontier equation.

Under these conditions, the fixed effect model  is often recommended as the estimator of choice in the panel model
literature. However, there is a growing consensus (see however Gong and Sickles 1989) that the fixed-effects
estimator does not perform well in stochastic frontier models. As Greene (2001) puts it, “In the context of the
stochastic frontier model, there is a particular ambiguity about the use of the fixed effects model. The term picks
up all firm specific heterogeneity, whether it is in the production frontier or in the inefficiency term, and lumps it
all into the single ‘effect’.” (See also Simar 1992). With our  data, most of the variation (except  for the days fished
variable) is predominantly between groups rather than within groups, and so the fixed-effect estimator  (sometimes
called the within-groups estimator) fails to utilize most of the information in this data set.

Another  approach is to specify a model of technical efficiency that depends on a set of var iables which may include
some or all of the Xk variables defining th e production front ier.  In th is way, the effects of a set of variables on the
production frontier can be separated from the effect of a (possibly overlapping) set of variables on the placement
of a particular observation inside the front ier. The easiest way of doing this, while retaining use of the truncated



11Such a model can also potentially shed light on factors entering into ‘skipper skill’, as in Kirkley at al.
1998 and Kuperan et al. 2001.  Unfortunately, trip log data do not  contain much information  on the characteristics
of the skipper  to be useful for this purpose.

12These resul ts are consistent  with the finding of Wang and Schmidt (2002) , based on Monte Carlo
evidence, that i f the dependency of inefficiency on the Z variables is ignored, the estimated fir m-level efficiencies
are spuriously underdispersed. Since the technical inefficiency random variable uit is now a function of the Zit, and
the parameter : is no longer fixed, the mean and variance of this random variable is now conditional on the value
of the Zit,; the values of : and of the moments of u that are reported in Table 2 are those applicable to  Zit,’s equal
to the sample mean.

normal specification , is to specify one of the parameters of the distribution as a linear function of several variables;
for example, as in Battese and Coelli (1995),

uit ~ iid N+(:it, Fu
2)

   i = 1, . . . , N;  t = 1,...,Ti    (7)
:it =  *0 + 3j *j ln Zjit 

In such a model, the Z var iables affect  technical efficiency e-u in a log-linear way, and so the *j can be interpreted
as the negative of the elasticity of technical efficiency with  respect to Zj.

Such a model would serve two useful purposes. Fi rst, it  enables us to separate the effects of production variables
on the production front ier from the effect of these variables on technical efficiency, and thereby ensure that the
parameter estimates are consistent . We can do that by including in the Z variables those production variables that
enter the production front ier which we think may also affect technical efficiency. Second, such a model would also
enable us to shed some light on whether recent regulatory changes in this fishery, and in par ticular ly the issuance
of temporary seasonal permits to smaller vessels, have implications for technical efficiency in  this fishery.11

We include in  the Z variables all var iables (except  for the year dummies) that enter into the production frontier.
The resultant model as specified by equations (6) and (7) was estimated.  The estimates of the techn ical efficiency
effects are presented in Table 1, while those of the production  frontier  are presen ted in column 4 of Table 2 and
labelled the Technical Efficiency Model.

The technical efficiency model is statistically significant, with the null hypothesis that *1 = *2 = *3 = *4 = 0 rejected
by a likelihood-ratio test with a value of 232.4, as contrasted with a cr itical value for the P2(4) distribution of 9.49
at the five percent level of sign ifican ce. Of the individual effects, length of vessel, perhaps surprisingly, is not
statistically significant, so that the idea that small vessels are associated with technical inefficiency receives no
support from the data. However, both tonnage and days per fishing trip are associated with technical efficiency,
while horsepower shows a modest but statistically significant negative association  with technical  efficiency. One
implication is that trip limits can reduce technical efficiency if they lead to trips that are artificia lly shortened
because of the imposition of the limit.

Allowing for these technical efficiency effects modifies the estimates of the production frontier somewhat. Length
of vessel remains important, and vessel horsepower has some effect as well. But the effect of vessel tonnage is no
longer statistically significant, and the length of the fish ing tr ip becomes even less important (although still
statistically significant). The year dummies become less important, and two become statistically insignificant. The
estimates of technical efficiency at the firm level are even lower than before; technical efficiency is estimated to
average 0.41 in our sample.12

7. CONCLUSION

While the three models estimated in this paper differ in detail, they all highlight the importance of allowing
explicitly for technical efficiency in modell ing productivity in th is fishery. The consistent  finding of an average
level of technical efficiency in this fishery that is a t or below fifty percent is a matter that should be of considerable
concern to those responsible for developing licensing policy in this and similar fisheries.
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Figures 1(a) and 1(b): Technical Efficiency Estimates, (a)Cross Section and (b)Panel Models

Table 1. Estimates of the technical efficiency parameters of the Technical Efficiency Model,
along with associated approximate standard errors

Constant 2.490
(0.951)

Length 0.085*
(0.295)

Horsepower 0.278
(0.063)

Tonnage -0.817
(0.094)

Trip Length  (days) -0.566
(0.096)

* - Estimate is not significant at the five percent level.



Table 2. Estimates of the parameters of the Stochastic Production Frontier Models,
along with associated approximate standard errors

Ordinary
Least Squares

Cross-Section
Model

Panel Data
Model

Technical
Efficiency

Model

Constant 1.463
(0.276)

2.631
(0.228)

3.256
(0.494)

3.557
(0.326)

Length 1.098
(0.085)

1.132
(0.070)

0.870
(0.164)

1.096
(0.100)

Horsepower 0.185
(0.021)

0.247
(0.016)

0.179
(0.036)

0.331
(0.021)

Tonnage 0.301
(0.027)

0.190
(0.022)

0.317
(0.049)

-0.046*
(0.031)

Trip Length
(days)

0.385
(0.031)

0.280
(0.025)

0.407
(0.026)

0.154
(0.030)

Year 1993 0.045*
(0.025)

-0.046
(0.021)

-0.200
(0..41)

0.028*
(0.021)

Year 1994 -0.978
(0.051)

-1.233
(0.042)

-1.382
(0.089)

-1.200
(0.048)

Year 1995 -0.086
(0.023)

-0.042
(0.018)

-0.178
(0.036)

0.004*
(0.018)

Year 1996 -0.107
(0.022)

-0.109
((0.017)

-0.200
(0.035)

-0.083
(0.016)

Log-Likeli-
hood

-15626 -14808 -13177 -14692

: — -1.081
(0.336)

0.290*
(0.207)

0.235

Fv
2 (Var[v]) 0.811 0.144 0.079 0.079

Fu
2 — 2.749 0.774 1.779

E[u] — 0.998 0.818 1.154

Var[u] — 0.673 0.342 0.718

Technical Efficiency Estimates

Mean TE — 0.472 0.508 0.412

Maximum TE — 0.917 0.951 0.936

Minimum TE — 0. 00006 0.049 0.00005

StDev (TE) — 0.235 0.216 0.246

* - Estimates are not significant at the five percent level.


