GEOCOD

GEOMATICS FOR THE SUSTAINABLE MANAGEMENT OF FISH STOCKS LA GEOMATIQUE AU SERVICE DE LA GESTION DURABLE DES STOCKS DE POISSONS

Fisheries mapping and interpolation

Randy McVeigh & Marie-Josēe Fortin Department of Ecology and Evolutionary Biology, University of Toronto

Goal

 Explore approaches to distribution characterization for species of interest in the NW Atlantic

• Factors to consider:

- Descriptive power
- Intuitive appeal
- Utility for identifying change
- Sensitivity to data skew
- Sensitivity to sampling design

Data

- Species data
 - Trawl surveys (DFO Scientific Survey, NMFS)
 - catch weight (Kg)
 - catch number (individuals)
- Environmental data
 - CTD
 - Salinity (Bottom, surface)
 - Temperature (Bottom, surface)

Data – Grand Banks subset

 Developed approach on shrimp and crab scientific survey data for region 3LNO (Grand Banks)

GEOMATICS FOR THE SUSTRINABLE MANAGEMENT OF FISH STOCKS

Spatial Characterization Methods

Minimum convex polygons

Kernel density estimation

GEOMATICS FOR THE SUSTRINABLE MANAGEMENT OF FISH STOCKS LA GEOMATIQUE AU SERVICE DE LA GESTION DURABLE DES STOCKS DE POISSONS

Minimum Convex Polygons (MCP)

 Polygon with smallest possible area surrounding positive catch points, with all outer vertices
< 180°

GEOMATICS FOR THE SUSTRINABLE MANAGEMENT OF FISH STOCKS

Minimum Convex Polygons (MCP)

 Proportion of points included may be varied to exclude Outliers and focus on distributioncore

Area change over time

 MCP allows for easy comparison of species range between years

GEOMATICS FOR THE SUSTRINABLE MANAGEMENT OF FISH STOCKS

Area change over time

 MCP allows for easy comparison of species range between years

GEOMATICS FOR THE SUSTRINABLE MANAGEMENT OF FISH STOCKS

Area change over time

 MCP (100%) area changes in fall shrimp abundance, 1995-2005

Minimum Convex Polygons (MCP)

- Strengths
 - Simplicity
 - Easy comparison across years
 - Intuitive appeal

Minimum Convex Polygons (MCP)

- Weaknesses
 - sensitive to outliers
 - obscures intra-range variation in abundance
 - sensitive to differences in sampling effort and locational precision
 - difficulty capturing irregularly-shaped distributions

Kernel Density Estimation

- Produces probability density surface
- Gaussian kernel function at each data point
- 50 km bandwidth, 10 km cell

Kernel Density Estimation

Strengths

- Incorporates magnitude (catch weight, number)
- Easily implemented
- Grid surface output

Weaknesses

- Doesn't account for spatial autocorrelation (density surface, not a spatial interpolation)
- No estimation of uncertainty

- Spatial dependence observed and modelled, then used to predict values at unsampled locations
- Two main components of geostatistics:
 - Variogram estimation
 - Kriging (interpolation)

- Assumptions
 - Spatial dependence
 - Stationarity
- Advantages
 - Anisotropy
 - Estimation error
 - Known to scientists
- Challenges
 - Complex trends
 - Right-skewed data

- Log-transformation can be applied and log-normal kriging performed
 - However, log-transformation may not normalize fisheries data

• Shrimp catch weight

Fall 2002

Guilia

GEOMATICS FOR THE SUSTRINABLE MANAGEMENT OF FISH STOCKS

• Cod catch weight, spring (Apr-Jun)

1995

1990

GEOMATICS FOR THE SUSTRINABLE MANAGEMENT OF FISH STOCKS

- Strengths
 - Accounts for spatial dependence structure, anisotropy
 - Can estimate uncertainty
 - Can incorporate prior knowledge
- Weaknesses
 - Less objective process
 - Complex implementation

Next step

- Applying kriging to all study regions for all species of interest
- Challenges
 - Gear differences
 - Intra-annual temporal division
 - Lack of spatial continuity

Seasonal division

Seasonal division

Seasonal division

- Newfoundland
 - Otter trawls; Campelen shrimp trawl beginning 1995
- Nova Scotia
 - Yankee trawl 1970-81; Western trawl 1982-
- Quebec
 - Shrimp trawls (URI, Campelen)
- New Brunswick
 - Western trawl
- USA
 - Yankee trawl 36

Refinements to kriging approach

- Robust variogram estimators
 - Cressie (1980)
- Alternative measures of assessing fit
 - AIC (Akaike's Information Criterion)
 - GOF (Goodness of Fit)
 - Minimising function
- We invite your input!

Acknowledgements

- Allan Brand
- Camille Goffi
- Heather Morris
- LE Lab

