Uniform Asymptotics of the Meixner Polynomials

Xiang-Sheng Wang
USTC-CityU Joint Advanced Research Center
Ren-Ai Road, Suzhou 215123, P. R. China
Email: xswang4@mail.ustc.edu.cn

Outline

- Introduction
- Methodology

1. $1 \mathrm{D} \rightarrow 2 \mathrm{D}$
2. Discrete \rightarrow Continuous
3. Deift-Zhou steepest-descent method
4. Global \rightarrow Local

- Some local problems
- Results and numerical evidence
- Conclusion and discussions

Introduction: Meixner polynomials

- For $\beta>0$ and $0<c<1$, the Meixner polynomials are explicitly given by

$$
M_{n}(z ; \beta, c)={ }_{2} F_{1}\left(\left.\begin{array}{c}
-n,-z \\
\beta
\end{array} \right\rvert\, 1-\frac{1}{c}\right)=\sum_{k=0}^{n} \frac{(-n)_{k}(-z)_{k}}{(\beta)_{k} k!}\left(1-\frac{1}{c}\right)^{k}
$$

where $(a)_{0}:=1$ and $(a)_{k}:=a(a+1) \cdots(a+k-1)$ for $k \in \mathbb{N}^{*}$.

- The Meixner polynomials satisfy the discrete orthogonality condition

$$
\sum_{k=0}^{\infty} \frac{c^{k}(\beta)_{k}}{k!} M_{m}(k ; \beta, c) M_{n}(k ; \beta, c)=\frac{c^{-n} n!}{(\beta)_{n}(1-c)^{\beta}} \delta_{m n}
$$

- Our problem is to find the large- n behavior of $M_{n}(z ; \beta, c)$.

Introduction: background

- The Meixner polynomials have many applications in statistical physics. (Borodin-Olshanski CMP 2000, Johansson CMP 2000)
- Using probabilistic arguments, Maejima and Van Assche (Math. Proc. Cambridge Philos. Soc. 1985) have given an asymptotic formula for $M_{n}(n \alpha ; \beta, c)$ when $\alpha<0$ and β is a positive integer. Their result is given in terms of elementary functions.
- Jin and Wong (Constr. Approx. 1998) have used the steepest-descent method for integrals to derive two infinite asymptotic expansions for $M_{n}(n \alpha ; \beta, c)$. One holds uniformly for $0<\varepsilon \leq \alpha \leq 1+\varepsilon$, and the other holds uniformly for $1-\varepsilon \leq \alpha \leq M<\infty$; both expansions involve the parabolic cylinder function and its derivative.

Introduction: motivation of our study

Problem: Large- n behavior of $M_{n}(n \alpha ; \beta, c)$.

- $\alpha<0$ is okay.
- $0<\varepsilon \leq \alpha \leq M$ is okay.
- What about $0 \leq \alpha \leq \varepsilon$ and $-\varepsilon \leq \alpha \leq 0$?

Introduction: difficulties in steepest-descent method

$$
\frac{(\beta)_{n}}{n!} M_{n}(n \alpha-\beta / 2 ; \beta, c)=\frac{e^{\mp(n \pi i \alpha-\beta \pi i / 2)}}{2 \pi i} \int_{-\infty}^{(0+)} \frac{\exp \{n f(w, \alpha)\} d w}{w(1-w)^{\beta / 2}(w / c-1)^{\beta / 2}}
$$

where $f(w, \alpha):=\alpha \ln (w / c-1)-\alpha \ln (1-w)-\ln w$.

- Turning points: $a=\frac{1-\sqrt{c}}{1+\sqrt{c}}, b=\frac{1+\sqrt{c}}{1-\sqrt{c}}$.
- Case $\alpha \in[a-\varepsilon, a+\varepsilon]$ or $\alpha \in[b-\varepsilon, b+\varepsilon]$: Airy function
- Case $\alpha \in[\varepsilon, a-\varepsilon] \cup[a+\varepsilon, b-\varepsilon] \cup[b+\varepsilon, \infty)$: elementary function
- Case $0 \leq \alpha \leq \varepsilon$?

Introduction: our approach

- In view of Gauss's contiguous relations for hypergeometric functions, we may restrict our study to the case $1 \leq \beta<2$.
- Fixing any $0<c<1$ and $1 \leq \beta<2$, we intend to investigate the large- n behavior of $M_{n}(n z-\beta / 2 ; \beta, c)$ for z in the whole complex plane.
- Our approach is based on the Deift-Zhou steepest-descent method for oscillatory Riemann-Hilbert problems.

Introduction: Deift-Zhou steepest-descent method

- Deift and Zhou (Ann. of Math. 1993): modified KdV equation.
- Deift et al. (CPAM 1999): orthogonal polynomials with respect to exponential weights.
- Baik et al. (Annals of Mathematics Studies 2007): orthogonal polynomials with respect to a general class of discrete weights.

Methodology

- 1D \rightarrow 2D (Fokas, Its and Kitaev): relate the Meixner polynomials with a 2×2 matrix-valued function which is the unique solution to an interpolation problem.
- Discrete \rightarrow Continuous (Baik et al.): change the discrete interpolation problem to a continuous Riemann-Hilbert problem (RHP) whose unique solution can be expressed in terms of the solution to the basic interpolation problem.
- Deift-Zhou steepest-descent method: change the oscillate RHP to an equivalent RHP which can be asymptotically decomposed into several local RHPs.
- Global \rightarrow Local (Deift et al.): decompose the global RHP into several local RHPs and choose some suitable local solutions such that these solutions can be pieced together to build a global approximate solution.

Step 1: 1D \rightarrow 2D

Define

$$
P(z):=\left(\begin{array}{cc}
\pi_{n}(z) & \sum_{k=0}^{\infty} \frac{\pi_{n}(k) w(k)}{z-k} \\
\gamma_{n-1}^{2} \pi_{n-1}(z) & \sum_{k=0}^{\infty} \frac{\gamma_{n-1}^{2} \pi_{n-1}(k) w(k)}{z-k}
\end{array}\right) .
$$

For any $k \in \mathbb{N}$, we have

$$
\begin{array}{r}
\operatorname{Res}_{z=k} P_{12}(z)=\pi_{n}(k) w(k)=P_{11}(k) w(k), \\
\operatorname{Res}_{z=k} P_{22}(z)=\gamma_{n-1}^{2} \pi_{n-1}(k) w(k)=P_{21}(k) w(k) .
\end{array}
$$

Thus,

$$
\operatorname{Res}_{z=k} P(z)=\lim _{z \rightarrow k} P(z)\left(\begin{array}{cc}
0 & w(z) \\
0 & 0
\end{array}\right) .
$$

Step 2: Discrete \rightarrow Continuous (example)

Suppose

$$
\operatorname{Res}_{z=0} \bar{Q}(z)=\lim _{z \rightarrow 0} \bar{Q}(z)\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) .
$$

Define

$$
\bar{R}(z):= \begin{cases}\bar{Q}(z)\left(\begin{array}{cc}
1 & -z^{-1} \\
0 & 1
\end{array}\right), & \text { for any } z \in D(0,1) \backslash\{0\} ; \\
\bar{Q}(z), & \text { for any } z \in \mathbb{C} \backslash \bar{D}(0,1) .\end{cases}
$$

We then have

$$
\bar{R}_{+}(z)=\bar{R}_{-}(z)\left(\begin{array}{cc}
1 & z^{-1} \\
0 & 1
\end{array}\right), \text { for any } z \in \partial D(0,1)
$$

Step 3: Deift-Zhou steepest-descent method

- Mhaskar-Rakhmanov-Saff (MRS) numbers (turning points)

$$
a=\frac{1-\sqrt{c}}{1+\sqrt{c}}, \quad b=\frac{1+\sqrt{c}}{1-\sqrt{c}} .
$$

- The equilibrium measure

$$
\rho(x)= \begin{cases}\frac{1}{\pi} \arccos \frac{x(b+a)-2}{x(b-a)} & x \in[a, b] ; \\ 1 & x \in[0, a] ; \\ 0 & \text { otherwise }\end{cases}
$$

- Use the equilibrium measure to change the oscillate RHP to an equivalent RHP which can be asymptotically decomposed into several local RHPs.

Step 4: Global \rightarrow Local

- Global two-dimensional Riemann-Hilbert problem is in general difficult to handle.
- Local two-dimensional Riemann-Hilbert problems are usually easy to solve, and the solutions are not unique.
- Decompose the global problem into several local problems and choose some suitable local solutions such that these solutions can be pieced together to build a global approximate solution.

Local problems near the turning points a and b

The Airy parametrix was first introduced by Deift et al. (CPAM 1999).

Local problem near the band interval (a, b)

$$
\begin{gathered}
J_{N}(x)=\left\{\begin{array}{cc}
\left(\begin{array}{cc}
0 & -(1-x)^{\beta-1} \\
(1-x)^{1-\beta} & 0
\end{array}\right), \quad \text { for any } x \in(a, 1) ; \\
\left(\begin{array}{cc}
0 & -(x-1)^{\beta-1} \\
(x-1)^{1-\beta} & 0
\end{array}\right), \quad \text { for any } x \in(1, b) . \\
N(z)=\left(\begin{array}{cc}
\frac{(z-1)^{\frac{1-\beta}{2}}\left(\frac{\sqrt{z-a}+\sqrt{z-b}}{2}\right)^{\beta}}{(z-a)^{1 / 4}(z-b)^{1 / 4}} & \frac{-i(z-1)^{\frac{\beta-1}{2}}\left(\frac{\sqrt{z-a}-\sqrt{z-b}}{2}\right)^{\beta}}{(z-a)^{1 / 4}(z-b)^{1 / 4}} \\
\frac{i(z-1)^{\frac{1-\beta}{2}}\left(\frac{\sqrt{z-a}-\sqrt{z-b}}{2}\right)^{2-\beta}}{(z-a)^{1 / 4}(z-b)^{1 / 4}} & \frac{(z-1)^{\frac{\beta-1}{2}}\left(\frac{\sqrt{z-a}+\sqrt{z-b}}{2}\right)^{2-\beta}}{(z-a)^{1 / 4}(z-b)^{1 / 4}}
\end{array}\right) .
\end{array} .\right.
\end{gathered}
$$

Local problem near the origin

(D1) $D(z)$ is analytic in $\mathbb{C} \backslash(-i \infty, i \infty)$;
(D2) $D_{+}(z)=D_{-}(z)\left[1-e^{ \pm 2 i \pi(n z-\beta / 2)}\right]$, for any $z \in(-i \infty, i \infty)$;
(D3) for $z \in \mathbb{C} \backslash(-i \infty, i \infty), D(z)=1+O\left(|z|^{-1}\right)$ as $z \rightarrow \infty$.
The solution is given by

$$
D(z)=\exp \left\{\frac{1}{2 \pi i} \int_{0}^{\infty}\left[\frac{\log \left(1-e^{-2 n \pi s-i \pi \beta}\right)}{s+i z}-\frac{\log \left(1-e^{-2 n \pi s+i \pi \beta}\right)}{s-i z}\right] d s\right\} .
$$

As $n \rightarrow \infty, D(z) \sim 1$ uniformly for z bounded away from the origin.

Results: regions of approximation

The asymptotic formulas in the neighborhood of the origin involve the function $D(z)$.

Results: asymptotic formulas in a neighborhood of the origin

- For $z \in \Omega_{l}^{0}$, we have

$$
\pi_{n}(n z-\beta / 2) \sim D(z) n^{n} e^{n g(z)} \frac{(-z)^{(1-\beta) / 2}\left(\frac{\sqrt{b-z}+\sqrt{a-z}}{2}\right)^{\beta}}{(b-z)^{1 / 4}(a-z)^{1 / 4}}
$$

- For $z \in \Omega_{r, \pm}^{0}$, we have

$$
\begin{aligned}
\pi_{n}(n z-\beta / 2) \sim & -2 D(z)(-n)^{n} e^{n v(z) / 2+n l / 2} \sin (n \pi z-\beta \pi / 2) e^{-n \widetilde{\phi}(z)} \\
& \times \frac{z^{(1-\beta) / 2}\left(\frac{\sqrt{b-z}+\sqrt{a-z}}{2}\right)^{\beta}}{(a-z)^{1 / 4}(b-z)^{1 / 4}}
\end{aligned}
$$

Numerical evidence

	True value	Approximate value
$z=-1$	1.99529×10^{233}	1.99473×10^{233}
$z=-0.001$	8.36624×10^{187}	8.35137×10^{187}
$z=0.001$	3.07930×10^{187}	3.07272×10^{187}
$z=0.05$	-2.51701×10^{180}	-2.51507×10^{180}
$z=0.171$	-9.12697×10^{174}	-9.12530×10^{174}
$z=0.172$	-1.22035×10^{175}	-1.22003×10^{175}
$z=2$	-4.71541×10^{201}	-4.70772×10^{201}
$z=5.828$	2.78146×10^{259}	2.78231×10^{259}
$z=5.829$	2.86933×10^{259}	2.87018×10^{259}
$z=100$	2.16586×10^{399}	2.16586×10^{399}

The true values and approximate values of $\pi_{n}(n z-\beta / 2)$ for $c=0.5, \beta=1.5$ and $n=100$. Note that $a \approx 0.17157$ and $b \approx 5.82843$.

Conclusion: big hammer to strike a small nail

- We have used the Deift-Zhou steepest-descent method for oscillate RHP to derive uniform asymptotic formulas for the Meixner polynomials in a neighborhood of the origin.
- Can we use a simpler method, such as the ordinary steepest-descent method for integrals or Wang-Wong method for difference equations, to derive uniform asymptotic formulas for the Meixner polynomials in a neighborhood of the origin?

Discussions: asymptotic formulas near the origin

- Krawtchouk polynomials

Integral technique: Qiu-Wong (Comput. Methods Funct. Theory 2004)
RHP technique: Dai-Wong (Chin. Ann. Math. Ser. B 2007)

- Charlier polynomials

ODE technique: Dunster (J. Approx. Theory 2001)
RHP technique: Ou-Wong (to appear)

- Meixner polynomials

Suggestion: try integral technique (Qiu-Wong), or ODE technique (Dunster), or difference technique (Olde Daalhuis), or difference-differential technique (Dominici).

Thank you!

